
Chapter 1

Computers and Systems

1.1 The Physical Computer

It is not necessary to understand how a computer works in order to use one—but it helps. An elementary
understanding of computer architecture helps demystify the nature and rules of programming languages
and enables one to use these languages more wisely. It is essential for anyone who needs to attach devices
to a computer or buy one wisely. The architecture of modern computers varies greatly from type to type,
and new developments happen every year. Therefore, it is impossible to describe how all computers
work. The following discussion is intended to give a general idea of the elements common or universal
to personal computers and workstations today.

The main logical parts of a computer, diagrammed in Figure 1.1, can be roughly compared to parts
of a human body:

• The CPU (central processing unit) is the brain of the computer.
• The computer’s RAM (random access memory) chips are its memory.
• The bus is the nervous system; it carries information between the CPU and everything else in

the computer.
• The input devices (e.g., keyboard) are the computer’s senses.
• The output devices (e.g., monitor) are the computer’s effectors (hands, voice).

1.1.1 The Processor

In a typical modern computer, the central processing unit (CPU) is the main element on the processor
chip. The CPU controls and coordinates the whole machine. It contains a set of registers:

3



4 CHAPTER 1. COMPUTERS AND SYSTEMS

CPU OS-ROM Main memory (RAM) Cache

MonitorInstruction�
cache

Registers

ALU

Clock

Control

Floating-point�
coprocessor

IR�
�IC�
�MAR�
�MDR�
� ROM

ROM controller Memory controller

Video board

Serial interfaceSCSI interface Parallel interface

Keyboard

Floppy�
controller

Bus Bus

Floppy�
disk drive

Controller and�
hard disk drive

Controller�
and printer

Modem

Figure 1.1. Basic architecture of a modern computer.

• The instruction register (IR) holds the current machine instruction.
• The instruction counter (IC) holds the address of the next machine instruction.
• The memory data register (MDR) holds the data currently in use.
• The memory address register (MAR) holds the address from which the data came.

One of its components is the clock, which ticks at a fixed rate and controls the fundamental speed
at which all of the computer’s operations work. The clock rate on a microprocessor chip is set as fast
as is (conservatively) possible without causing processing errors. This setting is the megahertz (MHz)
rating published by the manufacturer.

The ALU. The arithmetic and logic unit (ALU) is the part of the processor containing the many cir-
cuits that actually perform computations. Typically, an ALU includes instructions for addition, nega-
tion, and multiplication of integers; comparison; logical operations; and other actions. Many computers
also have a floating-point coprocessor, for handling arithmetic operations on real (floating-point)
numbers. Floating-point instructions are important for many scientific applications to achieve adequate



1.1. THE PHYSICAL COMPUTER 5

accuracy at an acceptable speed. Taken together, this set of instructions forms the machine language
for that particular processor.

Control ROM and the instruction cycle. A small read-only memory inside the control unit contains
instructions (called microcode) that control all parts of the CPU and define the actions of the instruction
cycle, the ALU, and the instruction cache (discussed next).

To use a computer, we write a program, which is a series of instructions in some computer language.
Before the program can be used or run, those instructions must be translated into machine language
and the machine-language program must be loaded into the computer’s main memory. Then, one at a
time, the program’s instructions are brought into the processor, decoded, and executed. A processor
executes the program instructions in sequence until it comes to a “jump” instruction, which causes it to
start executing the instructions in another part of the program. A typical instruction brings data into
one of the registers, sends data out to the memory or to an output device, or executes some computation
on the data in the registers.

1.1.2 The Memory

The memory of a computer consists of a very large number of storage locations called bits, which is
short for “binary digits.” Each bit can be turned either off (to store a 0) or on (to store a 1). All
memory in a computer is made out of bits or groups of bits, and all computation is done on groups of
bits. The bits in memory are organized into a series of locations, each with an address. In personal
computers, each addressable location is eight bits long, called a byte. In larger computers and older
computers, the smallest addressable unit often is larger than this; in a few machines, it is smaller.
Figure 1.2 is a diagram of main memory, depicted as a sequence of boxes with addresses.

A byte could contain data of various types. It could contain one character, such as ’A’, or a small
number. The range of numbers that can be stored in one byte is from 0 to 255 or from −128 to +127,
which is not large enough for most purposes. For this reason, bytes generally are grouped into longer
units. Two bytes are long enough to contain any integer between 0 and 65,536, while four bytes can
hold an integer as large as 2 billion.1

Traditionally, a word is the unit of data that can pass across the bus to or from main memory
at one time.2 Small computers usually have two-byte words; workstations and larger computers have
words that are four bytes or longer.

A computer might have several different types of memory to achieve different balances among
capacity, cost, speed, and convenience. The major types are cache memory, main memory, secondary
memory, and auxiliary memory. These are diagrammed in Figure 1.3 and discussed next.

Cache memory. The fastest and most expensive kind of memory is a cache. Some machines have
small caches to speed up access to frequently used data that are stored in the main memory. The first

1Number representation is covered in Chapters 7 and 15.
2In machines where the bus transports only one byte, word means two bytes and long word means four bytes.



6 CHAPTER 1. COMPUTERS AND SYSTEMS

• Memory is a very long series of bytes; we show only the first few here.
• Every byte has an address (only the even addresses are shown here).
• In this picture, even-address bytes are white; odd-address bytes are gray.
• We diagram the addresses outside the boxes because they are part of the hardware. They are not

stored in memory.
• The addresses in the diagram begin with the address 0 and continue through 43.

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

This amount of memory could store

• 44 characters (one byte each), or
• 22 short integers (two bytes each), or
• 11 long integers or single precision floating-point numbers (four bytes each).

Figure 1.2. Main memory in a byte-addressable machine.

Sequential-access auxiliary memory (tapes)

Direct-access memory (disks)

Main memory

Cache
Capacity increases

Speed decreases

Cost per byte decreases

Figure 1.3. The memory hierarchy.

time an item is used, it is loaded into the cache. If it is used again soon, it is retrieved from the cache
rather than from the main memory, reducing the access time. Cache memories are small because they
are very expensive. Their small capacity limits the extent to which they can improve performance.

Main memory. The computer’s main memory (sometimes called RAM , for random access memory)
is where the active program (or programs) is kept with its data. Sometimes the operating system, which
controls the computer,3 also is kept in RAM; otherwise it is in read-only memory.

3Section 1.2 covers operating systems.



1.1. THE PHYSICAL COMPUTER 7

OS-ROM memory. ROM stands for “read-only memory.” An operating system (OS) in ROM
is a real convenience for the user for two reasons. First, it is installed in the computer and need
not be brought in from a disk. This saves time when the system is turned on. Second, ROM is
read-only memory, which means its contents can be read but not changed, either accidentally or on
purpose. A partly debugged program sometimes can “run wild” and try to store things in memory
locations allocated to some other process that is simultaneously loaded into the computer. With the
operating system in ROM, most of the system is protected from this kind of random modification.
The only remaining vulnerable part of the system is the area near memory address 0, which is called
low memory and contains the locations used to communicate between the operating system and the
input/output devices.

The disadvantage of using ROM for an operating system is that it is difficult and expensive to
improve the system or correct errors in it. When a company wishes to release a new version of a ROM
operating system, the code must be recorded on a set of ROM chips. The computer owner must buy a
set, remove the old ROM chips, and install the new ones.

Direct-access memory. Direct-access memory, also called secondary memory , is needed because even
the largest main memory cannot store all the information we need. Data files and software packages
are kept in secondary memory when not in use.4

A CD-ROM (compact disk, read-only memory) is an optical disk storage device, like an audio disc
except that it is used to store various types of data, not just music data. A CD-ROM reader contains
a laser that reads the minute marks etched into the surface of the disk. Once a CD-ROM has been
used to record data, it cannot be reused to record different data. Large collections of data of interest
to many people are recorded and distributed on CD-ROMs.

Hard disks and diskettes are the most common direct-access memory devices today. Through the
years, the physical size of these devices has decreased steadily, and the amount of information they can
hold has greatly increased. As technology has progressed, we have been able to store the bits closer
and closer together, enabling us to simultaneously decrease size and increase capacity.

Auxiliary memory. Today’s disks can store large volumes of information: 2 gigabytes (2 billion bytes)
now is a common disk capacity. However, most businesses and individuals find that 2 billion bytes of
secondary memory is not enough to meet all of their needs. Larger, cheaper memory devices are needed
to store backup (duplicate) copies of the files on the hard disk and infrequently used files. Magnetic
tapes and tape drives meet this need for auxiliary storage. A tape has very large capacity but must be
read or written sequentially. This makes retrieving a file from a tape that contains hundreds of files or
recording a new file on the end of the tape very slow and inconvenient.

4As memory capacities have expanded, our desire to store information has kept pace, so that this statement is as true today
as it was when direct-access memories were the size of today’s main memories.



8 CHAPTER 1. COMPUTERS AND SYSTEMS

1.1.3 Input and Output Devices

Input and output devices permit communication between human beings and the CPU. The most com-
mon input devices include keyboards, mice, and track balls. Typically, output is displayed either on a
video screen or via a printer. Since humans and the computer speak different languages, some transla-
tion is needed. Using a mouse allows the human to point or click at a portion of the screen to convey
a screen position and an intent to the computer. Interactions with a keyboard, the screen, or a printer
take place using the English language and some hardware-level translation.

In a simple view of the computer world, hitting the Z key on a keyboard causes a Z to go into the
computer, after which that Z can be sent to the video screen or a printer and reappear as a Z. While
this usually is true, it is very far from a direct or necessary connection.

Consider the keyboard. When you type the key in the lower left (usually marked with a Z), the
information that goes into the keyboard controller is the coordinates of that key, not a Z. Somewhere
a code table says “bottom row, first key means Z.” When the same keyboard is used in Germany, the
key in that position is marked with a Y, and the code table says “bottom row, first key means Y.”
Similarly, changing the wheel on a daisy-wheel printer changes the letter that prints on the paper.

Translation codes are arbitrary, and several codes are in common use. The most common character
code for personal computers is named ASCII (American Standard Code for Information Interchange),
a seven-bit code that supports upper- and lowercase alphabets, numerals, punctuation, and control
characters. Each device has its own set of codes, but the codes built into one device are not necessarily
the same as the codes built into the next device. Some characters, especially characters like tabs,
formfeeds, and carriage returns, are handled differently by different devices and even by different pieces
of system software running on the same device. For example, the character whose ASCII code is 12 is
named formfeed in the ASCII code table. The idea of the code makers was that a printer would eject
the paper when it received this code. The program in each printer’s controller was supposed to look for
this code and handle it, and most did. Today, also, some video controllers are programmed to respond
to a formfeed character in an analogous way, by clearing the screen.

As a computer user, you need to be aware that equipment not designed to be used together might
be incompatible in unexpected ways. You may find computer systems in which the label on the key
that you type, the letter that shows on the screen, and the one that comes out of the printer are all
different. This can happen because all three depend on software interpretation as well as hardware
capabilities.

1.1.4 The Bus

The bus is the pathway between the processor and everything else. It consists of two sets of wires: one
set has enough wires to transmit an address; the other set transmits data. When the processor needs
a data item, it puts the address of the item in the memory address register (MAR) and issues a fetch
command. The memory address register and the memory data register (MDR) sit at the end of the
bus line (see Figure 1.1).

When a fetch command is given, the address goes from the MAR out over the bus’s address lines
and a copy of the required data comes back over the bus’s data lines to the MDR. Similarly, to store



1.1. THE PHYSICAL COMPUTER 9

information into the memory, the information and the target address are put into these two registers
and a store command is given. The information goes out over the bus to the given address and replaces
whatever used to be there.

Control of peripherals and interfaces. The input and output devices are attached to the bus lines.
Each device has its own address and handles the information in its own way. Each device, in fact, has a
different set of instruction codes that it can handle and a controller to carry out those instructions. A
device controller is a small processor connected between the bus and the device that is used to control
the action of the device. For example, consider a hard disk. A disk has a controller that understands
how to get addresses, disk instructions, and information off the bus and how to put information and
signals back on the bus. It knows how to carry out and oversee all the disk operations.

Making all the highly varied devices respond to instructions in a uniform way is the job of device
drivers. A device driver consists of software that knows about the specific quirks and capabilities of a
specific device. It translates the uniform system commands into a form that the device can handle prior
to putting the commands on the bus lines. A different driver may be needed for every combination of
operating system and hardware. For example, a UNIX driver for a SCSI5 disk would translate the UNIX
read-disk command to the SCSI format. The user becomes aware that device drivers exist when he
or she wants to install a new device and must also install the appropriate driver.

Between a device’s driver and its controller is an interface, a doorway between the bus and the
device. There are many kinds of interfaces, with varied transmission properties, which can be classified
into two general groups: serial and parallel. A serial interface transmits and receives bits one at a
time. A parallel interface can transmit or receive a byte (or more) at a time, in parallel, over several
wires. Parallel interfaces commonly are used for printers; serial interfaces for modems, certain printers,
mice, and other slow-speed devices. A MIDI (musical instrument digital interface) is a serial interface
used to communicate with electronic musical instruments such as synthesizers and keyboards.

1.1.5 Networks

Inside the computer, the various hardware components communicate with each other using the internal
bus. It now is common practice to have computers communicate with each other to share resources and
information. This is made possible through the use of networks, physical wires (often phone lines) along
which electrical transmissions can occur. The extent of these networks is varied. A local area network
typically joins together tens of computers in a lab or throughout a small company. A global network,
such as the Internet, spans much greater distances and connects hundreds of thousands of machines
but is truly just a joining together of the smaller networks via a set of gateway computers. A gateway
computer is a bridge between a network such as the Internet on one side and a local network on the
other side. This computer also often acts as a firewall, whose purpose is to keep illegal, unwanted, or
dangerous transmissions out of the local environment.

5The small computer systems interface (SCSI) is a standard disk interface.



10 CHAPTER 1. COMPUTERS AND SYSTEMS

This is one way that a lab network might be set up. It is not drawn to scale; a hub is a small device that
could fit on the corner of a table.

To InternetHub

File server and large hard disk

Print server and printer

Workstation

Internet gateway

Figure 1.4. A local network in a student lab.

Sharing resources. One use of networks is to let several computers share resources such as file systems,
printers, and tape drives. The computers in such a network usually are connected in a server-client
relationship, as illustrated in Figure 1.4. The server possesses the resource that is being shared. The
clients, connected via a hub or switched ethernet connection, share the use of these resources. The
user of a client machine may print out documents or access files as if the devices actually were physically
connected to the local machine. This can provide the illusion of greater resources than actually exist,
as well as present a uniform programming environment, independent of the actual machine used. This
kind of sharing is less practical over larger networks due to delays caused by data transmissions through
gateway machines.

Communication. The other typical use of networks is communication. E-mail has become a pop-
ular way to send letters and short notes to friends and business associates. Chat rooms provide the
opportunity for more direct, interactive communication. The World Wide Web makes a wealth of
information
available to the average user at home that used to be available only in distant libraries. It also provides
new commercial opportunities; people now can shop for many items on the Web and are able to buy
specialty items or get bargains that were previously unavailable to them.

Networks also have changed the workplace and work habits. Many professionals use network trans-
missions between home and office or between two office locations to gain access to essential information
when they need it, wherever they are. This may include using a laptop computer that is connected to
the network via a cellular phone.

Distributed computing. Networks also are used to allow the computers to communicate between
themselves. The complexity of many of today’s problems requires the use of reserve computing power.
This can be achieved by synchronizing the efforts of multiple computers, all working in parallel on



1.2. THE OPERATING SYSTEM 11

separate components of a problem. A large distributed system may make use of thousands of computers.
Synchronization and routing of information in such systems are major tasks, among the many performed
by the operating system’s software, as discussed next.

1.2 The Operating System

The operating system (OS) is the most important piece of system software and the first one you
see when you turn on your machine. It is the master control program that enables you to use the
hardware and communicate with the rest of the system software. The operating system has several
major components, including the system kernel, which is the central control component; a memory
management system, which allocates an area of memory for each program that is running; the file
system manager, which organizes and controls use of the disks; device drivers, which control the
hardware devices attached to the computer; and the system libraries, which contain all sorts of useful
utility programs that can be called by user programs. In addition, a multiprocessing system (described
later) has a process scheduler, which keeps track of programs waiting to be run and determines when
and how long to run each one.

Command shells and windows. Operating systems can be divided into two categories: command-line
interpreters and windowing systems. Command shells, or command-line interpreters, were invented
first and can be used on small, simple machines. A command shell displays a system prompt at the
left of the screen and waits for the user to type in a command. Then, the command is executed by
calling up some piece of system or user software. When that program terminates, control goes back to
the operating system and the system prompt again is displayed.

A newer idea is a windowing system. Window-based systems include the Apple Macintosh system,
Microsoft Windows (which is an extension of DOS), and NextStep and X-Windows, which provide window
interfaces for UNIX. Except for the Macintosh, these windowing systems can run side-by-side with a
command shell and provide access to it. This is important because command-line interpreters generally
provide capabilities that are not available within the window environment.

In a window environment, multiple windows can be displayed on the screen, including perhaps a
command window. Windows can be used to display file directories, run programs, and so forth. The
user accesses the contents of the windows using a mouse or some other point-and-click device. Seeing
your files, moving and copying them, renaming them, and every other thing that you do is much easier
in a window environment.

Multiprogramming systems. Another way to categorize systems is by whether they can run several
programs at the same time or are limited to one at a time. Ordinary personal computers are limited
to one process at a time. However, modern personal workstations and large computers, often called
mainframes, have multiprogramming operating systems. UNIX is one of the best known and most
widely used multiprogramming systems.



12 CHAPTER 1. COMPUTERS AND SYSTEMS

Workstations are capable of running a few processes concurrently, and mainframes often can support
50 or 100 users, running the programs in a time-shared manner. In time sharing, each user process
is given a short slice of CPU time, then it waits while all the other users get their turns. This works
because users spend much more time thinking and typing than running their programs. Any request
by a program for input or output (I/O) also ends a time slice; the OS initiates the input or output,
then selects another process to be run while the I/O happens. The process scheduler is the system
component that coordinates and directs all this complex activity.

Each kind of computer must have its own custom-tailored operating system. Some systems are
proprietary and have been implemented for only one manufacturer’s models. For example, Apple’s
system for the Macintosh is jealously guarded against copying. Other systems, such as UNIX and DOS,
are widely implemented or imitated. Increasingly, the computer owner has a choice about what system
will be installed on his or her hardware.

The choice of hardware is important because it determines what software you can run and what
diskettes you can read. Software and file systems are constructed to be compatible with a particular
system environment, and they do not work with the wrong system. For example, you cannot read a
UNIX diskette in a DOS system, and a C compiler that works under UNIX must be modified to work
under DOS. Windowing systems and multiprogramming are powerful aides to program development.
However, both consume large amounts of main memory, disk space, and processing time. Trying to run
them with a machine that is not big enough or fast enough is a mistake.

1.3 Languages

The purpose of a computer language is to allow a human being to communicate with a computer.
Human language and machine language are vastly different because human capabilities and machine
capabilities are different. Each kind of computer has its own machine language that reflects the par-
ticular capabilities of that machine. Computer languages allow human beings to write instructions in
a language that is more appropriate for human capabilities and can be translated into the machine
language of many different kinds of machines.

1.3.1 Machine Language

Built into the CPU of each computer is a set of instructions that the hardware knows how to execute.
The behavior of each instruction and its binary code are documented in the hardware manual. Tech-
nically, it is possible to program a computer by making lists of these codes. That is how programming
was done 45 years ago.

A machine language program is a sequence of instructions, each of which consists of an instruction
code, often followed by one or two register codes or memory addresses. In a machine, these are all
represented in binary.6 In the early days of computers, when people still wrote programs in machine

6Binary is the base 2 number system. Information is represented as strings of bits (see Chapter 15).



1.3. LANGUAGES 13

language, they did not write them in binary because people were (and are) abominably bad at writing
long strings of 1’s and 0’s without making errors. Instead, they used the octal number system,7 in which
information is represented as strings of digits between 0 and 7. Each octal digit translates directly into
three binary bits. Thus, a machine language program was written as a long series of lines, where each
line was a string of octal digits.

1.3.2 Assembly Languages

When people had to use machine language, it took a very long time to write and debug a program. The
next development was symbolic assembly language. Instead of writing octal codes, the programmer
wrote symbolic codes for instructions and defined a name for each data-storage location. The three
lines that follow show how a simple action might look when expressed in assembly language; this code
adds two numbers and stores them in a variable named sum. The same addition expressed in C would
be sum = n1 + n2;

ldreg *n1, d1 / Load first number into register d1.
add *n2, d1 / Add second number to the register.
sto d1, sum / Store result in the location for sum.

A translator, called an assembler, analyzed the symbolic codes and assembled machine-code in-
structions by translating each symbol into its code and assigning memory locations for the data objects
used by the program.

Every name and quoted string used in a program must be stored at some address in the computer’s
memory. To write in machine language, you manually assign an address to each object. Happily,
assembly languages and high-level languages such as C free you from concern over these addresses. The
programmer declares the names to be used at the top and defines each name by giving it a data type
or quoted string value. When the assembler translates this into machine language, it assigns memory
locations for these objects.

Assembly languages still are very important for writing programs so closely related to the hardware
that high-level languages like C simply have no commands to express them. Many large systems are
written primarily in a high-level language but contain some parts coded in assembly language. These
portions are part of the system kernel. They work directly with parts of the machine and must operate
as efficiently as possible.

1.3.3 High-Level Languages

Programming in an assembly language is very tedious. Furthermore, an assembly language is specific
to one type of machine and probably very different from assembly languages for machines of other
manufacturers. Therefore, assembly language programs are not portable—that is, they are not easily
converted for use on other machines. In contrast, programs in languages like FORTRAN and C are highly
portable, because compilers for these languages have been created for nearly every kind of computer.

7Octal is base 8.



14 CHAPTER 1. COMPUTERS AND SYSTEMS

Over the past 40 years many high-level languages have been developed, some of which have stood
the test of time and some of which have not. Each instruction in a high-level language translates into
several at the assembly or machine language level. Programs written in a high-level language appear
much more like English and are more understandable to humans. In this section, we discuss a few
widely used programming languages.

The C language. C is a relatively old8 language that recently became very popular. It has charac-
teristics of both high-level languages such as Pascal9 and FORTRAN10 and low-level languages such as
assembly language. You still might see several dialects of C in older programs or books. In 1988, how-
ever, the American National Standards Institute (ANSI) adopted a standard for the language, known
as ANSI C. This standard was adopted with a few minor changes by the International Standards Or-
ganization (ISO) in 1990 and amended in 1994. This new standard is known as ISO C. The phrase
standard C can be applied correctly to either version of the standard. The changeover to the standard
language is nearly complete, so the beginning C student can safely focus all efforts on standard ISO C.

There are several reasons for the recent growth in the use of C:

• As the UNIX operating system has spread, so has C. C is the tool by which much of the power
of UNIX is accessed. UNIX has spread because of the very large amount of valuable software that
runs under it.

• From the beginning, C was a very powerful language and fun for the experienced programmer to
use. However, it lacked certain important kinds of compile-time error checking and therefore was
quite difficult for a beginner to use. ISO C incorporates important new error-checking features
and has eliminated many hardware dependencies. It developed into a much better language and
became suitable for both beginners and experienced programmers.

• C allows large programs to be written in separate modules. This makes it easier to manage large
projects, greatly facilitates debugging, and makes it possible to reuse program modules that do
common, useful jobs.

• The ISO C library is extensive and standardized. It contains functions for mathematical compu-
tation, input and output facilities, and various system utilities.

On the other hand, ISO C remains more error prone than languages of a similar age with similar
features, such as Pascal and Ada.11 It is popular among experienced programmers partly because of the
features that cause this error-prone nature:

• C allows the programmer to write terse, compact code that can run very efficiently. Any pro-
grammer who is a slow typist appreciates this. Sometimes programmers even make a game of

8Created originally in 1972, the language has been updated and expanded several times.
9Pascal has been used most extensively as an instructional language in universities.

10Short for “formula translator,” this language was developed primarily for doing scientific calculations.
11Ada is a programming language developed in the 1970s to support large-scale, portable application systems.



1.3. LANGUAGES 15

squeezing the unnecessary operations out of their code. On the negative side, compact code can
be hard to read and understand unless comments are used liberally to explain it.

• The error-checking system in ISO C is less rigid and more permissive than in competing languages.
Expert programmers claim that this permissiveness is an advantage and that the rigid mechanisms
in other languages often “get in the way” when they want to do something unusual. However,
these rigid systems are easier for the new programmer to understand and to use.

• C supports bit-manipulation operators that can select or change a single bit or group of bits in a
number. These are very important in system programs that must interface to hardware devices
that set and test values in specific memory locations. However, working with arbitrary machine
addresses and bit patterns must be done with extreme care to avoid errors.

• No restrictions are placed on the use of pointers. (A pointer is a variable representing the location,
as opposed to the value, of data.) This permits the use of some very efficient computational
methods, at the potential cost of destroying information anywhere in memory when an error is
made in setting a pointer value. Unfortunately, such errors are common, and many result in
system crashes and the need to reboot the system.

C and FORTRAN. FORTRAN is a very old language that has been used by engineers and scientists
since the infancy of computers. Originally, it was a language for scientific computation, and it still serves
that purpose. Over the years, the language has been updated, revised, and expanded, but its primary
focus remains high-performance numerical computation. A massive amount of scientific programming
now exists in the form of FORTRAN libraries and FORTRAN application programs that are used, and
shared, by scientists worldwide. The FORTRAN libraries are extremely efficient, reliable, and trusted.

Because many engineering departments are acquiring UNIX workstations, C is beginning to supplant
FORTRAN-77 in many engineering applications. This has some advantages. FORTRAN-77 still bears
the burden of being an old language. It is full of unnecessary complications and nonuniform conventions.
Much of the space in a FORTRAN textbook is spent explaining how to write the language correctly. In
contrast, a C textbook has a much simpler language to present and can spend more time explaining
how to use the language well.

On the other hand, FORTRAN-77 is a “safer” language. A program can get into trouble in very
few ways that will cause a system crash or cause the result of a seemingly correct expression to be
nonsense. C is prone to these problems, even when the programmer avoids using the advanced parts
of the language. When a C programmer begins to use pointers, debugging becomes substantially
more difficult than it ever could be in FORTRAN-77. Nonetheless, C is here, and thousands of former
FORTRAN programmers are beginning to use it. FORTRAN-to-C conversion programs exist and are
being used to make the transition less costly.

C and C++. The C++ language extends C to eliminate more causes of error and provide software-
engineering tools that are important for large projects. Also, C++ (but not C) is fully compatible with
the FORTRAN libraries. This can be a very important consideration for a department switching from



16 CHAPTER 1. COMPUTERS AND SYSTEMS

FORTRAN to C. C++ is a superset of C. The ordinary line-by-line code in a C++ program is written
in C. The extensions involve the way code is organized into modules and the way these modules are
used. The C++ extensions are a powerful tool for program organization and error prevention. However,
since the entire C language is included as a subset of C++, any error that you can make in C also can
be made in C++. The advantages of C++ are there only for those who know how to use them. For
beginners, C++ is a more difficult and confusing language than C.

The differences between C and C++ become significant only for moderate to large programs, and
only when C++ is used with proper object-oriented design techniques. All software-engineering tech-
niques presented in this book are appropriate for use with both C and C++. The way in which C
language elements are presented will lead toward an understanding of the design requirements for
C++.

1.4 What You Should Remember

1.4.1 Major Concepts

• This chapter provides a brief description of computer hardware and software. It describes the
parts of the machine a programmer must know to comprehend the operation of a program or buy
a personal computer system wisely.

• Computer languages and the process of translation are discussed, and the C language is compared
to FORTRAN and C++.

1.4.2 Vocabulary

The terms and concepts that follow have been introduced and described briefly. The first and second
columns contain terms related to computer hardware and operating systems; the third column relates
to the programming process.

CPU device controller program
register device driver machine language
memory serial interface operating system
cache parallel interface system kernel
ROM local area network system libraries
CD-ROM global network command shell
RAM gateway windowing system
bit firewall multiprogramming
byte server assembler
word client compiler
clock memory management system ANSI C
bus file system manager ISO C
hub floating-point coprocessor C++



1.5. USING PENCIL AND PAPER 17

1.5 Using Pencil and Paper

1.5.1 Self-Test Exercises

1. Which terms on the vocabulary list relate to the computer’s processor?

2. Which terms on the vocabulary list relate to the memory of a computer?

3. Which terms on the vocabulary list relate to the peripherals of a computer?

4. Which terms on the vocabulary list relate to a computer network?

5. Which terms on the vocabulary list relate to system software?

6. For what does each of the following abbreviations stand?

a. ALU f. ANSI k. LAN
b. bit g. I/O l. MIDI
c. CPU h. OS m. SCSI
d. ISO i. ROM n. MHz
e. ASCII j. WAN o. RAM

1.5.2 Using Pencil and Paper

1. Choose three terms from each column of the vocabulary list in Section 1.4.2. In your own words, give a
brief definition for each (a total of nine definitions).

2. What computer will you use for the programming exercises in this course? What kind of processor chip
does it have? How big is its main memory? What input and output devices are available for it? Is it
attached to a computer network?

3. Have you used a local area network? Why? Have you used the Internet? For what purposes?

4. What operating system runs on the computer that you will use for the programming exercises in this
course? Is this a multiprogramming system? What compiler will you use?

5. Explain the difference between

(a) a byte and a word.

(b) ROM and RAM.

(c) cache memory and main memory.

(d) a device controller and a device driver.

(e) a compiler and an assembler.

(f) a command shell and a windowing system.

(g) a LAN and a WAN.

(h) a gateway and a hub.


