
Chapter 3

The Core of C

The C language is a powerful language that has been used to implement some of the world’s most complex
programs. However, by learning a modest number of fundamental concepts, a newcomer to C can write
simple programs that do useful things. As with any language, the beginner needs a considerable amount of
basic information before it is possible to read or write anything meaningful. In this chapter, we introduce
some of the capabilities of C by using them in simple, but practical, programs and explaining how those
programs work. These examples introduce all the concepts necessary to read and write simple programs,
providing an overview of the central parts of the language. Later chapters will return to all of the topics
introduced here and explain them in greater detail.

3.1 The Process of Compilation

In Chapter 2, we discussed the process of creating a C program. One of the stages in that process is
compilation (Section 2.2). The compilation step can also be broken into stages, as shown in Figure 3.1. It
helps a programmer to understand what these stages are, and the problems that can arise at each stage.

Lexical analysis: Identify the words and symbols used in the code. Some words are built into C and form
the core of the language; these are called keywords and are listed in Appendix C. New words can be defined
by the programmer by giving a declaration. For example, in Figure 2.7, two declarations were used to define
the words n1, n2, n3, and average.

Preprocessing: Carry out the preprocessor commands, which all start with the # symbol on the left end
of the line. These commands are used to bring sets of C library declarations into your program. In this
chapter, you will see that they can also be used to define symbolic names for constants.

39

40 CHAPTER 3. THE CORE OF C

Stage Purpose

1. Lexical analysis Identify the words and symbols used in the code
2. Preprocessing Carry out the preprocessor commands
3. Parsing Analyze the structure of each declaration and statement, according to the

official grammar of the language
4. Code generation Select the appropriate machine operation codes and produce the actual

machine instructions that will carry out the C-language program statements
The object code can be saved in a file or linked with library code modules, as
shown in Figure 2.6, to form an executable program.

 lexer

C program
(source code)

C program
(object code)

preprocessor parser code generator

C library
header files

C syntax
(grammar rules)

Machine-
dependent codes

Figure 3.1. The stages of compilation.

Parsing: Analyze the structure of each declaration and statement according to the official grammar of the
language. When the compiler parses your code it may discover missing punctuation, incomplete statements,
bad arithmetic expressions, and various other kinds of structural errors.

Code generation: Select the appropriate machine operation codes and produce the actual machine in-
structions that will carry out the C-language program statements. If the compiler can parse your code
correctly, and can find definitions for all of your symbols, it will generate machine code and store it in an
object-code file.

3.2 The Parts of a Program

3.2.1 Terminology.

A C program is a series of comments, preprocessor commands, declarations, and function definitions. The
function definitions contain further comments, statements, and possibly more declarations. Each of these
program units is composed of a series of words and symbols. We define these terms very broadly in the next
several paragraphs; their meaning gradually should become clearer as you look at the first several sample
programs. As you read these definitions, you should refer to the diagram in Figure 3.2

3.2. THE PARTS OF A PROGRAM 41

/* ---
// Figure 2.7: A C program for the average algorithm.
// Compute and display the average of three numbers.
// ---
*/
#include <stdio.h> /* #include and #define commands belong here. */

int main(void)
{
 double n1, n2, n3; /* The three input numbers. */
 double average; /* The average of the three numbers. */

 puts("Compute the average of 3 numbers");
 puts("--------------------------------");
 printf("Please input 3 numbers: ");
 scanf("%lg%lg%lg", &n1, &n2, &n3); /* Read the numbers. */

 average = (n1 + n2 + n3) / 3.0; /* Average is sum / 3. */
 printf("The average of %g, %g, and %g = %g \n\n",
 n1, n2, n3, average); /* Print answers. */
 return 0;
}

identifying comments

declarations

preprocessor commands

statements

code block
main function

Figure 3.2. How to lay out a simple program.

Comments. At the top of a program, there should be a few lines enclosed between the symbols /* and
*/ that supply information about the program’s purpose and its author. These lines are comments. Their
purpose is to inform the human reader, not the computer, and so they are ignored by the compiler. Comments
also can and should appear throughout the program, wherever they could help a reader understand the form
or function of the code.

Preprocessor commands. Also, ly a series of commands at the top of a program tell the C compiler
how to process the pieces of a program and where to look for essential definitions. These preprocessor
commands all start with the symbol # and are handled by the C preprocessor before the compiler starts to
translate the code itself, as indicated in Figure 3.1.

Words. Many of the words used to write a program are defined by the C language standard; these are known
as keywords. A list of keywords can be found in Appendix C. Other words are defined by the programmer.
These words can be grouped into categories analogous to English parts of speech; the table in Figure 3.3
lists the kinds of words in C and their English analogs.

Declarations. The purpose of a declaration is to introduce a new word, or identifier, into the program’s
vocabulary. It is like a declarative sentence: it gives information about the objects a program will use. In
C, a declaration must be written in the program prior to any statement that uses the word it defines.

42 CHAPTER 3. THE CORE OF C

C Category In English Purpose

Identifiers Nouns Used to name objects
Data types Adjectives Used to describe the properties of an object
Operators Verbs Denote simple actions like add or multiply
Function calls Verbs Denote complex actions like finding a square root
Symbols Punctuation Symbols like a semicolon or # are used to mark the beginning

or the end of a program unit
Symbols Grouping Pairs of parentheses, brackets, quotes, and the like are used

to enclose a meaningful unit of code

Figure 3.3. Words in C.

Statements. A statement is like an imperative sentence; it expresses a complete thought and tells the
compiler what to tell the computer to do. Just as an English sentence has a verb and a subject, a typical
C statement contains one or more words that denote actions and one or several names of objects to use while
doing these actions. The objects we study in this chapter are called variables and constants; the action
words are assignment statements, arithmetic operations, and function calls. An entire program is like an
essay, covering a topic from beginning to end.

Blocks. Sometimes, C statements are grouped together by enclosing them in curly brackets (braces). Such
a group is called a block. Blocks are used with control statements to into action units that resemble
paragraphs.

Putting it all together. This chapter shows how to use a subset of the C language we call the beginner’s
toolbox. It consists of the basic elements from each category: comments, preprocessor commands, declara-
tions, objects, actions, and control statements. Each section will focus on one or a few elements and use
them in a complete program. The accompanying program notes should draw your attention to the practical
aspects of using each element in the given context.

The sample programs should help you gain a general familiarity with programming terminology and the
C language and provide examples to guide the first few programming efforts. Each topic is revisited in more
depth in later chapters. As you read this material, try to understand just the general purpose and form of
each part. Then test your understanding by completing one of the skeletal programs given at the end of the
chapter.

3.2.2 The main() program.

Every C program must have a function named main(), with a first line like the one shown here, followed by
a block of code in curly brackets. Identifying comments and preprocessor commands come before main().
The last line of code in main() is return 0. This much never changes.

The keyword void appears in the parentheses after main(). This means that main() does not receive
any information from the operating system. (Some complex programs do receive data that way.) The type

3.3. AN OVERVIEW OF VARIABLES, CONSTANTS, AND EXPRESSIONS 43

name int appears before the name main() to declare that main() will return a termination code to the
operating system when the program finishes its work.

The { and } (curly bracket) symbols may be read as “begin” and “end.” The brackets and everything
between them is called a program block. For simplicity, we usually use the shorter term block. Every
function has a block that defines its actions, and the statements in this block are different for every program.
They are carried out, in the order they are written, whenever the function is executed. A simple sequential
program format is described below; it has three main phases: input, calculation and output. Most short
programs follow this pattern.

int main(void)
{

Variable declarations, each with a comment that describes its purpose.

An output statement that identifies the program.
Prompts and statements that read the input data.
Statements that perform calculations and store results.
Statements that echo input and display results for user.
return 0;

}

3.3 An Overview of Variables, Constants, and Expressions

Before we can write a program that does anything useful, we need to know how to get information into and
out of a program and how to store and refer to that information within the program. This section focuses on
how a program can define and name objects and how those objects can be used in computations. Several ways
are introduced to write variable declarations and constant definitions. Formal rules and informal guidelines
for naming these objects are discussed and informal rules for diagramming objects are presented.

3.3.1 Values and Storage Objects.

A data value is one piece of information. Data values come in several types; the most basic of these are
numbers, letters, and strings of letters. When a program is running in a computer, it reads and writes data
values, computes them, and sends them through its circuits. A computed data value might stay for a while
in a CPU register, be stored into a variable in memory, or be sent to an output device. C keeps track of
where data values are when they are being moved around within the computer, but you must decide when
to output or store a value (assign it to a variable). C also permits you to give a symbolic name to a value.

We use the term storage object , or simply object to refer to any area of memory in which a value can
be stored1. Objects are created and named by declarations. Each one has a definite type and an address.
Many, but not all, contain values (the rest contain garbage). Some are variable, some are constant.

1This terminology is normal in C, and is consistent with the use of the term in C++. However, the term “object” in Java is
used only for instances of a class.

44 CHAPTER 3. THE CORE OF C

3.3.2 Variables

A variable is an area of computer memory that has been given a name by the program and can be used to
store, or remember, a value. You can visualize it as a box that can hold one data value at a time.

The programmer may choose any name (there are certain rules to follow when picking a name) for a
variable, so long as it is not a keyword2 in the language. Good programmers try to choose meaningful names
that are not too long.

Each variable can contain a specific type of value, such as a letter or a number. In this chapter, we
introduce the first three3 data types:

• char is used to store characters (letters, punctuation, digits)
• double is used for real numbers such as 3.14 and .0056. This types can represent an immense range of

numbers but does so with limited precision.
• int is used for integers such as 31 and 2006.

The amount of memory required for a variable depends on its type and the characteristics of the local
computer system. Normally, simple variables are 1 to 8 bytes long. For example, an int (in many machines)
uses four bytes of memory while a double occupies eight, and a char only one4.

Declarations. A variable is created by a declaration. (Unlike some languages, C requires every variable
name to be declared explicitly.) The declaration specifies the type of object that is needed, supplies a name
for it, and directs the compiler to allocate space for it in memory. Declarations can appear at the beginning
of any block of code, just after the opening {. Only the statements within a block can use the names declared
at its beginning. We call them local names because they are not “visible” to other blocks.

The simplest declaration is a type name followed by a variable name, ending with a semicolon. The
following declaration creates an integer variable named minutes:

int minutes;

For each name declared, the compiler will create a storage object by allocating the right amount of memory
for the specified type of data. The address of this storage object becomes associated with or bound to the
variable name. Thereafter, when the programmer refers to the name, the compiler will use the associated
address. Sometimes we need to refer explicitly to the address of a variable; in those contexts, we write an
ampersand (which means “address of”) in front of the variable name. For example, &minutes means “the
address of the variable minutes.”

2Keywords are words such as main() and void that have preset meanings to the translator and are reserved for specific uses.
These are listed in Appendix C.

3Other types are introduced in Chapters 7, 15, and 11,
4A full treatment of types int and double is given in Chapter 7 where we deal with representation, overflow, and the

imprecise nature of floating point numbers.

3.3. AN OVERVIEW OF VARIABLES, CONSTANTS, AND EXPRESSIONS 45

modifier

const

type name

double

object name

mass

initializer

= 5.27;

Figure 3.4. Syntax for declarations.

Syntax for declarations. The general form of a declaration, shown in Figure 3.4, contains four parts:
zero or more modifiers,5 a type name, an object name or names, and an optional initializer for each name.
The parts are written in the order given, followed by a terminating semicolon, as diagrammed in Figure 3.4.
The various different data types will be explored in the next few chapters. Object naming conventions are
discussed shortly. An initializer gives a variable an initial value. This is done by using an = sign, followed
by a value of the appropriate type.6

If multiple objects are declared, and possibly initialized, using a single statement, the objects are sep-
arated by commas. We have adopted a style in which most declaration lines declare one variable and
have a comment explaining the use of that variable. This is a good way to write a program and make it
self-documenting.

Declaration examples. Two examples of variable declarations were given in Chapter 2, Figure 2.7,
which declares four double variables, n1, n2, n3and average. Figure 3.5 illustrates variations on the basic
declaration syntax and shows how to draw diagrams of variables. The first line declares one variable of
type double, as we have done many times already. This line tells C to allocate enough memory to store a
double value and use that storage location whenever the name length is mentioned. The declaration does
not put a value into the variable; it will contain whatever was left in that storage location by the program
that previously ran on the computer. This value is unpredictable and meaningless in the present context.
Formally, we say that it is an undefined value; informally, we call it garbage. The garbage stays there
until a value is read into the variable (perhaps by scanf()) or stored in the variable by an assignment
statement.

A variable is diagrammed, as in Figure 3.5, by drawing a box with the variable name just above the
box and the current value inside it. The size of each box is proportional to the number of bytes of storage
required on a representative C system. In the diagram of length, its undefined value is represented by a
question mark. Variable diagrams, or object diagrams, are a concrete and visual representation of the
abstractions that the program manipulates. We use them to visualize relationships among objects and to

5In the C standard, the properties const and volatile are called type qualifiers and extern, static, register, and auto
are called storage class specifiers. For simplicity, and because the distinctions are not important here, we refer to both as
modifiers. The modifiers are optional and, with the exception of const, you need not understand or use them for the time
being. We use volatile in Chapter 15. We discuss static in Chapter 10 and all storage classes, in general, in Chapter 19.
Additionally, the modifier extern is important in complex, multimodule programs and is demonstrated in Chapter 20.

6The rules for initializers will be given as each type is considered.

46 CHAPTER 3. THE CORE OF C

Four variables are declared here and diagrammed below.

int main(void)
{

double length; /* Length, in meters (uninitialized). */
double weight = 1.5; /* Weight, in kilograms (initialized to 1.5). */
int k, m = 0; /* One unitialized and one initialized variable. */
char gender = ’F’ /* Use a char literal to initalize a char variable. */
... /* Rest of program goes here. */

}

m
0

weight
1.5

k
?

length
?

gender
F

Figure 3.5. Simple declarations.

perform step-by-step traces of program execution. Object diagrams become increasingly important when we
introduce compound data objects such as arrays, pointers, and data structures.

The second line in Figure 3.5 declares the variable weight and gives it an initial value. This shorthand
notation combines the effect of a declaration and an assignment:

double weight; /* Weight, in kg. Contains garbage. */
...
weight = 1.5; /* Now weight contains value 1.5 */

As we progress to more complex programs, the ability to declare and initialize a variable in one step will
become increasingly important.

The third line in Figure 3.5 declares two variables, k and m, and it initializes m. It does not initialize
k. To do that, another = sign and value would be needed prior to the comma. This omission is a common
mistake of beginning programmers. Combining two declarations in this manner on one line saves space and
writing effort. However, it does not provide a place to put separate comments explaining the purpose of the
variables and so should be done only when the meaning of the variables is the same or they are logically
related.

Caution. C has a somewhat arbitrary restriction that all of the declarations in a program block must come
immediately after the { that follows main(void) and before any statements. (This restriction is relaxed
in C++.)

Assignment. An assignment statement is one way to put a value into a variable. The term variable is used
because a program can change the value stored in a variable by assigning a new value to it. An assignment

3.3. AN OVERVIEW OF VARIABLES, CONSTANTS, AND EXPRESSIONS 47

begins with the name of the variable that is to receive the value. This is followed by an = sign and a value
to be stored (or an arithmetic expression that computes a value, see later). As an example,

minutes = 10; /* Store value 10 in variable "minutes". */

3.3.3 Constants and Literals

Literals. In addition to variables, most programs contain constants, which represent values that do not
change. A literal constant is one that is written, literally, in your code; in the assignment statement
radius = diameter/2.0; 2.0 is a literal double. For each type of value in C, there is a way to write a
literal constant. These will be explained as we go through the various types. Here is a table of literal formats
for the three types we have covered

C Syntax for Literal Constants
Type Examples Notes
double 3.1, .045 A string of digits with a decimal point.
double 4.5E-02 .045 written in scientific notation.
int 32767 A string of digits with an optional sign; no decimal point, no commas.
char ’A’ or ’%’ A single character enclosed in single quotes.

Symbolic constants. A symbolic constant is a constant to which we have given a name. There are two
ways in C to create a symbolic constant: a #define command and a const declaration. Physical constants
such as π often are given symbolic names. We can define the constant PI as

#define PI 3.1416

The #define commands usually are placed after the #include commands at the top of a program. It is
sound programming practice to use #define to name constants rather than to write literal constants in a
program, especially if they are used more than once in the code. This practice makes a program easier to
debug because it is easier to locate and correct one constant definition than many occurrences of a literal
number.

Note three important syntactic differences between #define commands and assignment statements: (1)
the #define command does not end in a semicolon while the assignment statement does; (2) there is no =
sign between the defined constant name and its value, whereas there always is an = sign between the variable
and the value given to it; and (3) you cannot use the name of a constant on the left side of an assignment
statement, only a variable.

Often, using symbolic names rather than literal constants saves trouble and prevents errors. This is true
especially if the literal constant has many digits of precision, like a value for π, or if the constant might be
changed in the future. Well-chosen descriptive names also make the program easier to read. For example,
we might wish to use the temperature constant, -273.15, which is absolute zero in degrees Celsius. A name
like ABS0_C is more meaningful than a string of digits.

48 CHAPTER 3. THE CORE OF C

Using #define. A #define command is generally used to define a physical constant such as PI, GRAVITY
(see Figure 3.7) or LITR_GAL (see Figure 3.18), or to give a name to an arbitrarily defined value that is used
throughout a program but might have to be changed at some future time. (The first example of such usage
is the loop limit N in Figure 6.14.) We use a #define for an arbitrary constant so that changing the constant
is easy if change becomes necessary. Changing one #define is easier than changing several references to the
constant value, and finding the #define at the top of the file is easier than searching throughout the code
for copies of a literal constant.

When you use a name that was defined with #define, you actually are putting a literal into your program.
Commands that start with # in C are handled as a separate part of the language by a part of the compiler,
called the preprocessor , that looks at (and possibly modifies) every line of source code before the main part
of the compiler gets it. The preprocessor identifies the #define commands and uses them to build a table
of defined terms, with their meanings. Thereafter, each time you refer to a defined symbol, the preprocessor
removes it from your source code and replaces it by its meaning. The result is the same as if you wrote the
meaning, not the symbol in your source code. For example, suppose a program contained these two lines of
source code before preprocessing:

#define PI 3.1415927
area = PI * radius * radius;

After preprocessing, the #define is gone. In some compilers, you can instruct the compiler to stop after
preprocessing and write out the resulting code. If you were to look at the preceding assignment statement
in that code, it would look like this:

area = 3.1415927 * radius * radius;

Note the following things about a #define command:

• No = sign appears between the constant’s name and its value.
• The line does not end in a semicolon, and you do not write the type of the name. (The C translator

will deduce the type from the literal.)
• In this example, PI is a double constant because it has a decimal point.

The C preprocessor always has been a source of confusion and program errors. However, these difficulties
are caused by advanced features of the preprocessor, not by simple constant definitions like those shown here.
A beginning programmer can use #define to name constants with no difficulty. The programmer usually is
unaware of the substitutions made by the preprocessor and does not see the version with the literal constants.

The const qualifier. You also can create a constant by writing the const modifier at the beginning of
a variable declaration. This creates an object that is like a variable in every way except that you cannot
change its value (so it is not really like a variable at all).7. A const declaration is like a variable declaration
except that it starts with the keyword const and it must have an initializer.

7A const variable has an address. This becomes important in advanced programs and in C++.

3.3. AN OVERVIEW OF VARIABLES, CONSTANTS, AND EXPRESSIONS 49

#define RATE .125 /* Annual interest rate. */
const double mrate = RATE/12; /* Monthly interest rate. */
double payment = 100.00; /* Monthly payment. */
double loan = 1000.00; /* Remaining unpaid principle amount. */
double interest; /* Current month’s interest. */

 payment

100.00

 loan

1000.00

 interest

?

mrate

0.01042
Constants:�

RATE: .125

Initial values�

of variables:

interest = mrate * loan ;
loan = loan + interest - payment;

 payment

100.00

 loan

910.4166

 interest

10.4166Variables after assignments:

Figure 3.6. Using constants.

A symbolic name is one way to clarify the purpose of a constant and the meaning of the statement that
uses the constant. That C provides two different ways to give a symbolic name to a constant value (#define
and const) might seem strange. C does so because each kind of constant can be used to do some advanced
things that the other cannot. We recommend the following guidelines for defining constants:8

• Use #define to name constants of simple built-in types.
• Use const to define anything that depends on another constant.

This usage is illustrated in Figure 3.6. The lines in this figure are excerpted from a program that computes
a payment table for a loan. The program uses #define for the annual interest rate, because while it is
constant for this particular loan, it is likely to change for future loans. By placing the #define at the top of
the program, we make it easy to locate and edit the interest rate at that future time. The monthly rate is
one-twelfth of the annual rate; we declare it as a const double initialized to RATE/12. We use const rather
than #define because the definition involves a computation.

The loan amount and the monthly interest are defined as variables, because they decrease each month.
The monthly payment normally will be $100 but we do not define it as a constant because the loan payment
on the final month will be smaller.

Following the declarations in the figure are diagrams for the objects declared. The variables payment,
loan, and interest are diagrammed as variable boxes. The striped box indicates that mrate is a constant
variable and cannot be changed. No box is drawn for RATE because it is implemented as a literal. The lower
line in the diagram shows the changes in the variables produced by the two assignment statements.

8These guidelines are consistent with the advanced uses of constants and with usage in C++.

50 CHAPTER 3. THE CORE OF C

3.3.4 Names and Identifiers

As a programmer works on the problem specification and begins writing code to solve a problem, he or she
must analyze what variables are needed and invent names for them. No two programmers will do this in
exactly the same way. They probably will choose different names, since naming is wholly arbitrary. They
might even use different types of variables or a different number of variables, since the same goals can often
be accomplished in many ways. In this section, we introduce guidelines and formal syntactic rules for naming
objects.

The technical term for a name is an identifier. You can use almost any name for an object, subject to
the following constraints. These are absolute rules about names:

1. It must begin with a letter or underscore.
2. The rest of the name must be made of letters, digits, and underscores.
3. You cannot use C keywords such as double and while to name your own objects. You also should

avoid the names of functions and constants in the C library, such as sin() and scanf().
4. C is case sensitive, so Volume and volume are different names.
5. Some compilers limit names to 31 characters. Very old C compilers use only the first eight characters

of a name.

These are guidelines for names:

1. Use one-letter names such as x, t, or v to conform to standard engineering and scientific notation.
Writing d = r * t is better for our purposes than writing the lengthier distance = rate * time.
Otherwise, avoid single-letter names.

2. When you have two similar quantities, such as two time instances, you might call them t1 and t2.
Otherwise, avoid using such similar names.

3. Use names of moderate length. Most names should be between 2 and 12 letters long.
4. Avoid names that look like numbers; O, l, and I are very bad names.
5. Use underscores to make compound names easier to read: tot_vol or total_volume is clearer than

totalvolume.
6. Try to invent meaningful names; x_coord and y_coord are better names than var1 and var2.
7. Do not use names that are very similar, such as metric_distance and meter_distance or my_var

and my_varr.

3.3.5 Arithmetic and Formulas

Arithmetic formulas, which are called expressions, are written in C in a notation very much like standard
mathematical notation, using the operators + (add), - (subtract), * (multiply), and / (divide). Normal

3.4. SIMPLE INPUT AND OUTPUT 51

mathematical operator precedence is supported; that is, multiplication and division will be performed
before addition and subtraction. As in mathematics, parentheses may be used for grouping9. These operators
are combined with variable names (such as radius), constants (such as PI), or literal values such as 3.14
or 10 to form expressions. The result of an expression can be used for output or it can be stored in memory
by using assignment. For example, the following statement computes the area of a circle with radius r and
stores the result in the variable area:

area = 3.1416 * r * r;

Using a constant definition (#define PI 3.1416) permits us to rewrite the area formula thus:

area = PI * r * r;

3.4 Simple Input and Output

A call on an input function is one way to put a value in a variable; we call an output function when we want
to see the value stored there. The input and output facilities in C are some of the most complex parts of the
language, yet we need to use them as part of even the simplest programs. The best way to start is to learn
to do input and output in a few simple ways. In this chapter, we focus on the elementary use of just three
I/O functions:

Function name Meaning of name Purpose of function

puts() Put string and newline To write a message and a newline on the screen
printf() Print output using a format To write messages and data values.
scanf() Scan input using a format To read a data value from the keyboard

These functions (and many others) are in the standard input/output library (stdio), which is “added” to the
program when you write #include <stdio.h>. Several examples given in this chapter use these functions
with the hope that you can successfully imitate them.10

Streams and buffers. Input and output in C are handled using streams. An input stream is a device-
independent connection between a program and a specified source of input data; an output stream connects
a program to a destination for data. In this book, we use streams connected to data files or devices such
as the computer’s keyboard and monitor screen. Three streams are predefined in standard C: one for input
(stdin), one for output (stdout), and one for error comments (stderr). The standard output stream is
directed by default to the operator’s video screen but can be redirected to a printer or a file.11 The standard

9Many more operators and the details of operator precedence and associativity are given in Chapter 4
10A note about notation: In writing about C functions, we often use the name of a function separately, outside the context of

program code. At these times, it is customary to write an empty pair of parentheses after the function name. The parentheses
remind us that we are talking about a function rather than some other kind of entity. In a program, they distinguish a function
call (with parentheses) and a reference to a function (without).

11The complexities of streams will be explored in Chapter 14.

52 CHAPTER 3. THE CORE OF C

input stream normally is connected to the keyboard but also can be redirected to get information from a
file.

Input and output devices are designed to handle chunks of data. For example, a keyboard delivers an
entire line of characters to the computer when you hit Enter, and a hard disk is organized into clusters that
store 1,000 or more characters. When we read from or write to a disk, the entire cluster is read or written.
On the other hand, programs typically read data only a few numbers at a time and write data one number
or one line at a time. To bridge the gap between the needs of the program and the characteristics of the
hardware, C uses buffers. Every stream has its own buffer, an area of main memory large enough to hold a
quantity of input or output data appropriate for the stream’s device.

When the program uses scanf() to read data, the input comes out of the buffer for the stdin stream.
If that buffer is empty, the system will stop and wait for the user to enter more data. If a user types more
data than are called for, the extra input remains in the input buffer until the next use of scanf().

Similarly, when the program uses printf() to produce output, that output goes to the output buffer and
stays there until the program prints a newline character (denoted by \n) or until the program stops sending
output and switches to reading input. This permits a programmer to build an output line one number at
a time, until it is complete, then display the entire line. However, the most common use of printf() is to
print an entire line at one time.

3.4.1 Formats.

Some input and output functions, like puts(), read or write a single value of a fixed type. A call on puts(),
which outputs a single string, is very simple: We write the message enclosed in double quotes inside the
parentheses following the function name. For example, we might write this lines as the first statement in a
program that computes square roots:

puts("Compute the square root of a number.");

Other input and output functions, including scanf() and printf(), can read or write a list of values of
varying types. Using these functions is more complex than using puts() because two kinds of things may
be written inside the parentheses. First comes a format string, which describes the form of the data. It
describes how many items will be read or written and the type of each item. Following that is either a list
of addresses for the input data (for scanf()) or a list of expressions whose results are to be printed (for
printf()). The complete set of rules for formats is long and detailed.12 Fortunately it is not necessary to
understand formats fully in order to use them. In this chapter, we show how to write simple formats for
three types of data.13

A format is a string (a series of characters enclosed in double quotes) that describes the form and
quantity of the data to be processed. Input and output formats are quite different and will be described
separately. Both, however, contain conversion specifiers. The conversion specifiers in the format tell the
input or output function how many data items to process and what type of data is stored in each item. Each

12These rules can be found in any standard reference manual, such as S. Harbison and G. Steele, C: A Reference Manual,
4th ed (Englewood Cliffs, NJ: Prentice-Hall, 1995).

13As other types of data are introduced in Chapters 7 through 11, more details about formats will be presented.

3.4. SIMPLE INPUT AND OUTPUT 53

conversion specifier starts with a percent sign and ends with a code letter(s) that represents the type of the
data.

Data Input Output Notes

Type Specifier Specifier

char " %c" "%c" Type a space between the quote and the % sign for input.
int "%i" "%i" "%d" also works.
double "%lg" "%g" Use %lg for input, but only %g" (without the letter l) for output.

Using input formats. An input format is a series of conversion specifiers enclosed in quotes; for example,
the format string "%i" could be used to read one integer value and "%i%i" could be used to read two integers
that are separated by spaces on the input line. In a call on scanf(), the format is written first, followed by
a list of the addresses of the variables that will receive the data after they are read. Here are two complete
calls on scanf():

scanf("%i", &minutes);
scanf(" %c%i%lg", &gender, &age, &weight);

The first line tells scanf() to read one integer value and store it at the memory location allotted to the
variable named minutes. The second line tells scanf() to read a character an integer, and a real number.
The character will be stored at the address of the variable named gender, the integer in the variable named
age, and the real number in the variable named weight.

Using output formats. Output formats contain both conversion specifiers and words that the program-
mer wishes to see interspersed within the data. Therefore, output formats are longer and more complex than
input formats. An appropriate output format to print the data just read might look like this:

"Gender: %c Age: %i Weight: %g\n"

The words and the spaces are written exactly the way they should appear on the screen. The %c, %i and %g
tell printf() where to insert the data values in the sentence. The \n represents a newline character. We
need it with printf() to cause the output cursor to go to a new line. (The \n is not needed with puts().)
Hence, most printf() formats end in a newline character. Make this a habit: Use \n at the end of every
format string to send the information to your screen immediately and prepare for the next line.14

Following the format string in a call on printf() is the list of variables or expressions whose values we
want to write (do not use the ampersand for output). Exactly one item should appear in this list for each %
in the format. A complete call on printf() might look like this:

printf("Gender: %c Age: %i Weight: %g\n", gender, age, weight);

14The exception is a format string used to display a user prompt. These normally end in a colon and a space so that the
screen cursor does not move to a new line and the user types the input on the same line as the prompt.

54 CHAPTER 3. THE CORE OF C

This tells printf() to print the values stored in the variables gender, age, and weight. These values will
appear in the output after labels that tell the meaning of each number. The output from this line might be

Gender: M Age: 21 Weight: 178.5

3.5 A Program with Calculations

Now you know how to define constants and variables, how to get letters and numbers into and out of the
computer’s memory, and how to do simple calculations. You know, in general, the form of a program. In this
section, we combine all these elements in a simple program in Figure 3.7 to illustrate variable declarations,
assignments, input, output, and calculations. In this program, some parts of the code are boxed. Program
notes corresponding to these boxes are given below.

The problem. A grapefruit is dropped from the top of a very tall building15. It has no initial velocity
since it is dropped, not thrown. The force of gravity accelerates the fruit. Determine the velocity of the fruit
and the distance it has fallen after t seconds. The time, t, is read as an input.

Notes on Figure 3.7: Grapefruits and gravity.

Introductory comments.
• The first two lines of “Grapefruits and Gravity” are a comment block. The first line of such a block

starts with /* and the last line ends with */ Other lines in the block do not need any special mark at
the beginning, but using ** or // (as shown here) makes an attractive heading.

• Good programmers put comments at the top of a program to identify the program, its author, and the
date or version number. Comments are also written throughout the code to explain the purpose of each
group of statements. The compiler does not use the comments—we write them for the benefit of the
humans who will read the code.

First box: preprocessor commands.
• Any line that starts with a #, called a preprocessor command , is handled by the preprocessor before the

compiler translates the code.
• In this program, as in most, we ask the preprocessor to bring in the file stdio.h and include the contents

of that file as part of the program. This is the header (basically, the table of contents) for the standard
I/O library. This command makes the standard input-output library functions available for use.

• We use a #define command to give a symbolic name to the constant for the acceleration of gravity at
sea level.

15This problem will serve as the basis for a series of example programs in the following sections.

3.5. A PROGRAM WITH CALCULATIONS 55

/* Determine the velocity and distance traveled by a grapefruit
// with no initial velocity after being dropped from a building.
*/

#include <stdio.h>
#define GRAVITY 9.81 /* gravitational acceleration (m/s^2) */

int main(void)
{

double t; /* elapsed time during fall (s) */
double y; /* distance of fall (m) */
double v; /* final velocity (m/s) */

printf("\nWelcome.\n"
" Calculate the height from which a grapefruit fell\n"
" given the number of seconds that it was falling.\n\n");

printf(" Input seconds: "); /* prompt for the time, in seconds. */
scanf ("%lg", &t); /* keyboard input for time */

y = .5 * GRAVITY * t * t; /* calculate distance of the fall */
v = GRAVITY * t; /* velocity of grapefruit at impact */

printf(" Time of fall = %g seconds \n", t);
printf(" Distance of fall = %g meters \n", y);
printf(" Velocity of the object = %g m/s \n", v);

return 0;

}

Figure 3.7. Grapefruits and gravity.

56 CHAPTER 3. THE CORE OF C

Second box: the declarations.
• Declarations are used to define the names of variables that will be used in statements later in the program.
• We declare three double variables named t, y, and v. This instructs the compiler to allocate enough

space in memory to store three real values and use the appropriate location every time we refer to t, y,
or v. On most common machines, 8 bytes of memory will be allocated for each variable.

• Note that t, y, and v all are variables of type double. When you have several variables of the same
type, you also declare them on separate lines, as shown, or you may declare them all on one line like this:
double t, y, v;. In this problem, we declare one variable per line so that there is space for a comment
that explains the meaning or purpose of each variable. This is good programming practice.

Third box: printing an output title.
• A well-designed program displays a title and a greeting message so that the user knows that execution

has started.
• We could use either puts() or printf() to print the title, but if we use printf() we must end the string

with a newline character if we want the output cursor to move down to the next line.
• Here, we print a 3-line title, using three lines of code. Where we break the code, we end the line with a

quote mark and start the next with indentation and a quote mark.
• Program execution begins with the first box following the declarations, proceeding sequentially through

the other boxes to the end of the code. This is studied more fully in the next section.

Fourth box: user input.
• A prompt is a message displayed on the video screen that tells the user what to do. A program must

display a prompt whenever it needs input from the human user.
• In this prompt, we ask the user to type in the time it took the grapefruit to hit the ground. We do not

put a newline character at the end of the message because we want the input to appear on the same line
as the prompt. We do leave a space after the colon to make the output easy to read. The user sees

Welcome.
Calculate the height from which a grapefruit fell
given the number of seconds that it was falling.

Input seconds: 10

• In the call on scanf(), we send two pieces of information to the scanf() function: the format string and
the address of the variable to receive the input. This causes the system to scan the stdin input stream
to find and read a value for t (time, in seconds). This value may be entered with or without a decimal
point.

• The % sign in the format is the beginning of a conversion specifier. It tells us to read one item and specifies
the type of that item. We use %lg, for “long general-format real,” to read a value of type double. (The
letter between the % and the g is a lowercase letter l, not a numeral 1.)

• After the format comes the address for storing the input data. In this case, the data will be stored at
&t, the address of the variable t.

3.6. THE FLOW OF CONTROL 57

Fifth box: calculations.
• The symbol = is used to store a value into a variable. Here we store the result of the calculation
.5 * GRAVITY * t * t, which is the standard equation for distance traveled under the influence of a
constant force after a given time, in the variable named y.

• The calculation for height, y, uses several * operators. The * means “multiply.” When there is a series
of * operators, they are executed left to right.

• The second formula is standard for computing the terminal velocity of an object with no initial velocity
under the influence of a constant force.

Sixth box: the output.
• First, the input value (time) is echoed onto the video screen to convince the user that the calculations

were done with the correct value.
• Two printf() statements write the answers to the screen. We use a %g specifier to write a double value.

Note that this is different from a scanf() format, where we need %lg for a double.
• The printf() function leaves the output cursor on the same output line unless you put a newline

character, \n, in the format string. In this case, we use a \n to put the velocity value on a different line
from the distance.

• This would be a typical output:

Welcome.
Calculate the height from which a grapefruit fell
given the number of seconds that it was falling.

Input seconds: 10
Time of fall = 10 seconds
Distance of fall = 490.5 meters
Velocity of the object = 98.1 m/s

Gravity has exited with status 0.

Last box: termination.
• It is sound programming practice to display a termination comment. This leaves no doubt in the mind

of the user that all program actions have been completed normally.
• At the top of every program, we write int main(void). This tells the operating system to expect to

receive a termination code from your program.
• The last line in every program should be a return 0; statement. The zero is a termination code that

tells the system that termination was normal.

3.6 The Flow of Control

All the examples we have considered so far execute the code (instructions) line by line from beginning to
end. However, in most practical programs, it is necessary to follow alternative paths of execution, depending

58 CHAPTER 3. THE CORE OF C

This is a flow diagram of the program in Figure 2.7. It illustrates simple straight-line control and the way
we begin and end the diagram of a function.

 Print titles.

return

double n1
double n2
double n3
double average

Prompt user to enter 3 numbers.
Read 3 numbers.

main()

Echo the inputs and
calculate and print their average.

Figure 3.8. A complete flow diagram of a simple program.

on the data values and other conditions. For example, suppose you want to calculate the velocity of an
object, as in Figure 3.7, but you want to prohibit cases that make no physical sense; that is, negative values
of time. Two potential courses of action could be taken: (1) Do the calculation and display the answer or (2)
comment on the illegal input data and skip the calculation. Another reason we need nonsequential execution
is to enable a program to analyze many data values by repeating one block of code.

When a C program is executed, action starts at the first statement following the declarations. For
example, in Figure 3.7, execution starts with the printf() statement. From there, execution proceeds
to the next statement and the next, in order, until it reaches the return statement at the program, at
which point control returns to the operating system. This is called simple sequential execution. Control
statements are used to create conditional branching and repetitive paths of execution in a program. Flow
diagrams are used as graphical illustrations of the execution paths that these control statements create.

A flow diagram is an unambiguous, complete diagram of all possible sequences in which the program
statements might be executed. We use flow diagrams to illustrate the flow of control through the statements
of a program or part of a program. This is not so necessary for simple sequential execution. However,
a two-dimensional graphic representation can greatly aid comprehension when control statements are used
to implement more complex sequencing. A few basic rules for flow diagrams follow and are illustrated in
Figure 3.8:

1. A flow diagram for a complete program begins with an oval “start” box at the top and ends with an
oval return box at the bottom.

2. Declarations need not be diagrammed unless they contain an initializer (used to give the variable a
starting value and discussed more in the next chapter). It is probably clearer, though, if you include
one round-cornered box below the start oval that lists the variables declared within the function.

3. The purpose of each statement is written in the appropriate kind of box, each depending on the nature
of the action. Since the purpose of the diagram is to clarify the logic of the function, we use English

3.6. THE FLOW OF CONTROL 59

This is a flow diagram of the program in Figure 3.7.

double t, y, v�
GRAVITY is 9.81

main()

return

Print program title�
Prompt for input: duration of fall�

Read input: t (in seconds)

y = distance of fall = .5*GRAVITY*t2�

v = velocity at impact = GRAVITY*t

Echo input time t�
Print distance and velocity�
Print termination comment

Figure 3.9. Diagram of the grapefruits and gravity program.

or pseudocode, not C, to describe the actions of the program. Such a diagram could be translated into
languages other than C.

4. Simple assignment statements and function calls are written in rectangular boxes. Several of these
may be written in the same box if they are sequential and relate to each other.

5. Arrows connect boxes in the sequence in which they will be executed, from start to finish. In the
diagram of a complete function, no arrow is left dangling in space and no box is left unattached. All
arrow heads must end at a box of some sort, except in the diagram of a program fragment, where the
beginning and ending arrows might be left unattached.

6. The diagrams are laid out so that flow generally moves down or to the right. However, you may change
this convention if it simplifies your layout or makes it clearer.

7. No arrow ever branches spontaneously. Every tail has exactly one head.

As another example, Figure 3.9 shows the diagram of the program in Figure 3.7. The graph consists of
five nodes connected by arrows that indicate the flow of control during execution:

1. A start oval at the top, attached to a box listing the variable declarations.
2. A rectangular box listing statements that print a title and prompt for and read the input.
3. A box that calculates the values for distance and velocity using appropriate formulas.
4. A box that echoes the input and outputs the answers.
5. A return oval at the bottom that terminates the program.

Note that these boxes correspond roughly to the boxed units of code in the program.

60 CHAPTER 3. THE CORE OF C

3.7 Asking Questions: Conditional Statements

A large part of the power of a computer is the ability to take different actions in different situations. For this
purpose, all computers have instructions that do various kinds of conditional branching. These instructions
are represented in C by the if and if...else statements.

3.7.1 The Simple if Statement

In a simple if statement, the keyword if is followed by an expression in parentheses, called the condition,
followed by a single statement or a block of statements in curly brackets, called the true clause. At run time,
the expression is evaluated and its result is interpreted as either true or false. If true, the block of statements
following the condition is executed. If false, that block of statements is skipped. Execution continues with
the rest of the program following the conditional.

This control pattern is illustrated by the program in Figure 3.10. We use a simple if statement here to
test whether the input data make sense (the input is a valid time value). If so, we process the data; if not,
we do nothing.

Notes on Figure 3.10. Asking a question.

1. The outer box contains the entire simple if statement, which consists of
• The keyword if.
• The condition (t > 0).
• A block (inner box) containing two assignment statements and three printf() statements.

2. As shown in the flow diagram, below, there is only one control path into the if unit and one path out.
Control branches at the if condition but rejoins immediately below the true clause.

Read t (seconds)

t > 0?

false

y = * t2 �

v = GRAVITY * t�
print t, y, v

GRAVITY

2true

3. We use an if statement here to test whether the input data makes sense (the time is positive). If so,
we follow the true path in the diagram and process the data. if not, we follow the false path in the
diagram and do nothing.

3.7. ASKING QUESTIONS: CONDITIONAL STATEMENTS 61

This solves the same problem as Figure 3.7, except that we screen out invalid inputs.

/* ---
// Determine the velocity and distance traveled by a grapefruit
// with no initial velocity after being dropped from a building.
*/
#include <stdio.h>
#define GRAVITY 9.81 /* gravitational acceleration (m/s^2) */

int main(void)
{

double t; /* elapsed time during fall (s) */
double y; /* distance of fall (m) */
double v; /* final velocity (m/s) */

printf(" \n\n Welcome.\n"
" Calculate the height from which a grapefruit fell\n"
" given the number of seconds that it was falling.\n\n");

printf(" Input seconds: "); /* prompt for the time, in seconds. */
scanf("%lg", &t); /* keyboard input for time */

if (t > 0) { /* check for valid data. */

y = .5 * GRAVITY * t * t; /* calculate distance of the fall */
v = GRAVITY * t; /* velocity of grapefruit at impact */
printf(" Time of fall = %g seconds \n", t);
printf(" Distance of fall = %g meters \n", y);
printf(" Velocity of the object = %g m/s \n", v);

}

return 0;
}

Figure 3.10. Asking a question.

In either case, the next statement executed will be the final puts(). A sample output from the false
path follows. Note that the user gets no answers at all and no explanation of why. This is not a good
human–machine interface; it will be improved in the next program example.

Welcome.
Calculate the height from which a grapefruit fell
given the number of seconds that it was falling.

Input seconds: -1

Gravity has exited with status 0.

62 CHAPTER 3. THE CORE OF C

4. The inner box (the true clause) shows what happens when t, the time, is positive: we execute the
statements that calculate and print the answers. A sample output from this path might be

Welcome.
Calculate the height from which a grapefruit fell
given the number of seconds that it was falling.

Input seconds: 10
Time of fall = 10 seconds
Distance of fall = 490.5 meters
Velocity of the object = 98.1 m/s

Gravity has exited with status 0.

3.7.2 The if...else Statement

An if...else statement is like a simple if statement but more powerful because it lets us specify an
alternative block of statements to execute when the condition is false. It consists of

The keyword if.
An expression in parentheses, called the condition.
A statement or block of statements, called the true clause.
The keyword else.
A statement or block of statements, called the false clause.

At run time, the condition will be evaluated and either the true or the false clause will be executed (the
other will be skipped), depending on the result.

The syntactic difference between an if...else and a simple if statement is that the true clause of an
if...else statement is followed immediately by the keyword else, while the true clause of a simple if
statement is not. There must not be a semicolon before the else.

One common use of the if...else statement is to validate input data, it often is necessary to perform
more than one test. For example, one might need to test two inputs or test whether an input lies between
minimum and maximum acceptable values. To do this, we can use a series of if...else statements, as
demonstrated in Figure 3.11, which is an extension of the program in Figure 3.10. In this program, we make
two tests using two if...else statements in a row. We ensure that the input both is positive and does not
exceed a reasonable limit, in this case 60 seconds. Using if...else in this manner, we can test as many
criteria as needed.

The flow diagram corresponding to this new version of the program is given in Figure 3.12. In this
diagram, you can see the column of diamond shapes typical of a chain of if statements. The true clause
actions form another sequence to the right of the tests in the diamonds, and the final false clause terminates
the diamond sequence. All the paths come together in the bubble before the termination message.

3.7. ASKING QUESTIONS: CONDITIONAL STATEMENTS 63

This solves the same problem as Figure 3.10, except that we limit valid inputs to be less than 1 minute.

#include <stdio.h>
#define GRAVITY 9.81 /* Gravitational acceleration (m/s^2) */

#define MAX 60 /* Upper bound on time of fall. */

int main(void)
{

sdouble t; /* elapsed time during fall (s) */
double y; /* distance of fall (m) */
double v; /* final velocity (m/s) */

printf(" \n\n Welcome.\n"
" Calculate the height from which a grapefruit fell\n"
" given the number of seconds that it was falling.\n\n");

printf(" Input seconds: "); /* prompt for the time, in seconds. */
scanf("%lg", &t); /* keyboard input for time */

if (t < 0) { /* check for negative input */
printf(" Error: time must be positive.\n\n");

}

else if (t > MAX) { /* Is time value too big? */
printf(" Error: time must be <= %i seconds.\n\n", MAX);

}

else { /* Input is valid; calculate distance and velocity */
y = .5 * GRAVITY * t * t; /* calculate distance of the fall */
v = GRAVITY * t; /* velocity of grapefruit at impact */
printf(" Time of fall = %g seconds \n", t);
printf(" Distance of fall = %g meters \n", y);
printf(" Velocity of the object = %g m/s \n", v);

}

return 0;
}

Figure 3.11. Testing the limits.

64 CHAPTER 3. THE CORE OF C

This is a diagram of the program from Figure 3.11.

double t, y, v�
GRAVITY is 9.81�

MAX is 60

main()

return

Print program title�
Prompt for input: duration of fall�

Read input: t (in seconds)

y = .5*GRAVITY*t2�

v = GRAVITY*t�
Echo input time t�

Print distance and velocity

t < 0?

false

true
print "Error: time must be positive"

print "Normal termination"

t > MAX?

false

true
print "Error: time must be <= MAX seconds"

Figure 3.12. Flow diagram for Testing the limits.

Notes on Figure 3.11: Testing the limits.

First box: maximum time.
• This program checks for inputs that are too large as well as those that are negative.
• Since the upper limit is an arbitrary number, it might be necessary to change it in the future. To make

such changes easy, we define this limit, MAX, at the top of the program and use the symbolic name in the
code.

Large outer box: the if...else chain.
• Before computations are made, we inspect the data for two errors (first two inner boxes). We skip the

remaining tests and the calculations if either error is discovered. This method of error handling avoids
doing a computation with meaningless data, such as the negative value in the previous version of the
program.

• If no errors are found, we execute the code in the third inner box.

3.7. ASKING QUESTIONS: CONDITIONAL STATEMENTS 65

First inner box: negative input values.
• As in the prior example, the input must be positive to correspond to physical reality. The first if

statement handles this.
• The true clause of this if statement prints an error comment. Following that, control goes to the puts()

statement at the bottom of the program, skipping over the else if test and the else clause.

Second inner box: input values that are too large.
• The elapsed time also must be reasonable. We compare the input value to a maximum allowable value,

as defined in the problem specification (60 seconds in this case). The second if statement handles this.
• The true clause of this if statement prints an error comment. Then control skips the else clause and

goes to the puts() at the bottom of the program.
• Here is a sample of the program’s error handling:

Welcome.
Calculate the height from which a grapefruit fell
given the number of seconds that it was falling.

Input seconds: 100
Error: time must be <= 60 seconds.

Third inner box: the computation and output.
• If the input seems valid, we calculate and print the distance and velocity using the given formulas. Then

we echo the input and print the answers.
• Here is the output (without the titles) from a run with valid data:

Welcome.
Calculate the height from which a grapefruit fell
given the number of seconds that it was falling.

Input seconds: 20
Time of fall = 20 seconds
Distance of fall = 1962 meters
Velocity of the object = 196.2 m/s

3.7.3 Which if Should Be Used?

We looked at three different ways to use if statements. These three control patterns are appropriate for
different kinds of applications.

The simple if statement. The primary uses of the simple if statement:

• Processing a subset of the data items. Sometimes a collection of data contains some items that are
relevant to the current process and others that are not of interest. We need to process the relevant
items and ignore the others. For example, suppose that a file contains data from a whole census but
the programmer is interested only in people over the age of 18. The entire file would need to be read
but only a subset of the data items would be selected and processed.

66 CHAPTER 3. THE CORE OF C

• Handling data items that require extra work. Sometimes a few items in a data set require extra
processing. For instance, a cash register program must compute the sales tax on taxable items but not
on every item. It must test whether each product is taxable and, if so, compute and add the tax. If
not, nothing happens.

• Testing for an error condition or goal condition within a loop and leaving the loop if that condition is
found. This use of if with break will be discussed in Chapter 6.

The if...else statement. The primary applications of the if...else statement:

• Choosing one from a series of alternatives. Sometimes two or more alternative actions are possible and
one must be selected. In this case, we often use a series of if...else statements to test a series of
conditions and select the action corresponding to the first test whose result is true.
For example, consider a program that computes the roots of a quadratic equation: ax2 + bx+ c = 0. If
a is zero, the equation is linear, and should be solved by the method for linear equations. If both a and
b are zero, the equation is degenerate and has no roots. Otherwise, the equation is quadratic. In this
case, the program must first calculate the “discriminant” of the equation; namely, d = b2− 4ac. If this
value is positive, the roots of the equation are real numbers; if it is negative, the roots are complex.
Both cases are valid but require different processing and different output statements. An if...else
statement would be used to test the discriminant. Then the true clause would execute the code for
one kind of roots and the false clause would contain the code for the other.
The program for solving quadratic equations is on the website: look for a link labelled QuadRoots.
This multi-brancheddecision pattern will also be incorporated into programs in later chapters; one
example is shown in Figure 13.28.

• Normal processing versus nonfatal error handling. In this control pattern, an input value is read and
tested for legality. If it would cause a run-time error, an error message is given and the input is
not processed in the usual way. This control pattern is illustrated by the outer box and diagram in
Figure 3.11.

• Validating a series of inputs. We can use a series of if...else statements to test a series of inputs.
The true clause of each statement would print an error comment, and the false clause of the last
statement would process the validated data. This decision pattern is incorporated into Figure 3.11.

3.7.4 Options for Syntax and Layout (Optional Topic)

Normally each part of an if statement is written on a separate line and all the lines are indented except the
if, the else, and the closing curly bracket. However, a C compiler does not care how you lay out your code.

3.7. ASKING QUESTIONS: CONDITIONAL STATEMENTS 67

With brackets the code is spread out:
if (age > 18) {

adults = adults + 1; /* Count the adults. */
}
else {

kids = kids + 1; /* Count the children. */
}

Without brackets the code is more compact:
if (age > 18) adults = adults + 1; /* Count the adults. */
else kids = kids + 1; /* Count the children. */

Figure 3.13. The if statement with and without curly brackets.

Indentation. Inconsistent or missing indentation does not cause any trouble, it simply makes the program
hard for a human being to read. Since the compiler determines the structure of the statement solely from the
punctuation (semicolons and brackets), an extra or omitted semicolon can completely change the meaning
of the statement. Therefore, consistent style is important, both to make programs easier to modify and to
help avoid punctuation errors.

The condition. The condition in parentheses after the keyword if can be any expression; it does not
need to be a comparison. Whatever the expression, it will be evaluated. A zero result will be treated as false
and a nonzero result will be treated as true. (Note, therefore, that any number except 0 is considered to be
true.) The name of a variable, or even a call on an input function, is a legal (and commonly used) kind of
condition.

Very local variables. Technically, we could declare variables inside any block, even one that is part of
an if statement. However, this is not an appropriate style for a simple program.

Curly brackets. A true or false clause can consist of either a single statement or a block of statements
enclosed in curly brackets (braces). If it consists of a single statement, the curly brackets { and } may be
omitted. This can make the code shorter and clearer if the resulting clause fits entirely on the same line as
the keyword if or else. Figure 3.13 illustrates this issue. In it, the same if statement is written with and
without brackets. The first version is preferred by many experts, even though the brackets are not required.
However, others feel that the second version, without brackets, is easier to read because it is written on one
line as a single, complete thought. In either case, consistency makes code easier to read; a program becomes
visually confusing if one part of an if statement has { and } and the other does not.

68 CHAPTER 3. THE CORE OF C

3.8 Loops and Repetition

The if statement lets us make choices. We test a condition and execute one block of code or another based
on the outcome. Another kind of control structure is the loop, which lets us execute a block of statements any
number of times (zero or more). Conditionals and loops are two of the three fundamental control structures
in a programming language.16 Loops are important because they allow us to write code once and have a
program execute it many times, each time with different data. The more times a computation must be done,
the more we gain from writing a loop to do it, rather than doing it by hand or writing the same formula
over and over in a program.

C provides three types of loop statements that repeatedly execute a block of code: while, do, and for.
The while statement is the most basic and is introduced first, in Figure 3.14.17

3.8.1 A Counting Loop

Every loop has a set of actions to repeat, called the loop body, and a loop test to determine whether to
repeat those actions again or end the repetition. In this chapter, we study loops based on counting. In
these loops, a variable is set to an initial value, then increased or decreased each time around the loop until
it reaches a goal value. We call this variable a loop counter because it counts the repetitions and ends
the loop when we have repeated it enough times. Our next example, shown in Figure 3.14, introduces a
counting loop implemented using a while statement. It is a very simple program whose purpose is to make
the repetition visible. The corresponding flow diagram used for while loops follows the code in the figure.

Notes on Figure 3.14: Countdown.

First box: the loop variable.
A counter is an integer variable used to count some quantity such as the number of repetitions of a loop.

Second box: the loop.
• Before entering a while loop, we must initialize the variable that will be used to control it. Here we scan

an initial value into days_left, the counter variable.
• A while statement has three parts, in the following order: the keyword while, a condition in parentheses,

and a body. The loop body consists of either a single statement or a block of statements enclosed in
curly brackets, as shown in the program.

• To execute a while loop, first evaluate the condition. If the result is true, the loop body will be executed
once and the condition will be retested.

• This sequence of execution is illustrated by the flow diagram at the bottom of Figure 3.14. In the
diagram, the while loop is an actual closed loop. Control will go around this loop until the condition
becomes false, at which point control will pass out of the loop. In this case, control will go to the puts()

16The third basic control structure, functions, will be introduced in Chapter 5.
17The other two loop statements will be presented in Chapter 6.

3.8. LOOPS AND REPETITION 69

This program demonstrates the concept of a counting loop. After inputting N, a number of days, it counts
downward from N to 0.

#include <stdio.h>

int main(void)
{

int days_left; /* The loop counter. */

printf(" How many days are there until the exam? ");
scanf("%i", &days_left); /* Initialize the loop counter. */

while (days_left > 0) { /* Count downward from 20 to 1. */
printf(" Days left: %i. Study now.\n", days_left);
days_left = days_left - 1; /* Decrement the counter. */

}

puts(" This is it! I hope you are ready.");
return 0;

}

Prompt for number
of days until exam.

return

int days_left

 Print "this is it" message.

 print days_left
true

false

scanf days_left

 subtract 1 from
days_left

days_left
> 0 ?

main ()

Figure 3.14. Countdown.

70 CHAPTER 3. THE CORE OF C

statement. The same diamond shape used to represent a test in an if statement is used to represent
the loop termination test. The presence of a closed cyclic path in the diagram shows that this is a loop,
rather than a conditional control statement.

• The statement days_left = days_left - 1 tells us to use the old value of days_left to compute
a new one. Read this expression as “days_left gets days_left minus 1” or “days_left becomes
days_left minus 1”. (Do not call this assignment operation equals, or you are likely to become confused
with a test for equality.) In detail, this statement means
– Fetch the current value of days_left.
– Subtract 1 from it.
– Store the result back into the variable days_left.

• Each time we execute the body of the loop, the value stored in days_left will decrease by 1.
• Sample output:

How many days are there until the exam? 4
Days left: 4. Study now.
Days left: 3. Study now.
Days left: 2. Study now.
Days left: 1. Study now.
This is it! I hope you are ready.

• Control will leave the loop when the condition becomes false; that is, the first time that days_left is
tested after its value reaches 0. This will happen before displaying the 0.

Third box: after the loop.
After leaving the loop, control goes to the statements that follow it. The call on puts() displays a message
at the bottom of the output. The return statement returns to the operating system with a code of 0,
indicating successful termination.

3.8.2 An Input Data Validation Loop

Interactive computer users are prone to errors; it is very difficult to hit the right keys all the time. It is
common to lean on the keyboard or to hold a key down too long and type 991 instead of 91. A crash-
proof program must be prepared for bad input, sometimes called garbage input . A much-repeated saying
is “garbage in, garbage out” (GIGO); that is, the results of a program cannot be meaningful if the input
was erroneous or illegal. Although it is impossible to identify all bad input, some kinds can be identified by
comparing the data to the range of expected, legal data values. When an illegal data item is identified, the
program can quit or ask for re-entry of the data.

A good interactive program uses input prompts to let the user know what specific inputs or what kinds
of inputs are acceptable and what to do to end the process. If an input clearly is faulty, the program should
(at a minimum) refuse to process it. Preferably, it should explain the error and give the user as many chances
as needed to enter good data. One way to do this is the data validation loop.

3.8. LOOPS AND REPETITION 71

/* --------------- Compute the average speed of your car on a trip. */
#include <stdio.h>

int main(void)
{

int begin_miles, end_miles /* Odometer readings. */
int miles; /* Total miles traveled. */
double hours, minutes /* Duration of trip. */
double speed; /* Average miles per hour for trip.*/
puts("\n Miles Per Hour Computation \n");

printf(" Odometer reading at beginning of trip: ");
scanf("%i", &begin_miles);
while (begin_miles < 0) {

printf(" Re-enter; odometer reading must be positive: ");
scanf("%i", &begin_miles);

}

printf(" Odometer reading at end of trip: ");
scanf("%i", &end_miles);
while (end_miles <= begin_miles) {

printf(" Re-enter; input must be > previous reading: ");
scanf("%i", &end_miles);

}

printf(" Duration of trip in hours and minutes: ");
scanf("%lg%lg", &hours, &minutes);
hours = hours + (minutes / 60);
while (hours < 0.0) {

printf(" Re-enter; hours and minutes must be >= 0.\n");
scanf("%lg%lg", &hours, &minutes);
hours = hours + (minutes / 60);

}

miles = end_miles - begin_miles;
speed = miles / hours;
printf(" Average speed was %g \n", speed);

return 0;
}

Figure 3.15. Input validation using while.

72 CHAPTER 3. THE CORE OF C

A data validation loop (shown in Figure 3.15) prompts the user to enter a particular data item. It
then reads the item and checks whether the input meets criteria for a reasonable or legal value. If so, the
loop exits; if not, the user is informed of the error and reprompted. This continues until the user enters an
acceptable value.

Notes on Figure 3.15: Input validation using while.

First box: A valid odometer reading.
• Before the beginning of a while data validation loop, the program must prompt the user for input and

read it.
• The while loop tests the input. If it is good, the loop body will be skipped; otherwise, control enters the

loop. Numbers entered must be small enough to be stored in an integer variable.
• The loop must print an error comment that indicates what is wrong with the input, reprompt the user,

and read another input.
• Note that we need two prompts and two scanf() statements for this control pattern: one before the loop

and another inside the loop.

Second and third boxes: validating the other input.
• Data validation loops all follow a pattern similar to the first loop. The major difference between the first

two loops is that the mileage read by the first loop is used in the validation test of the second.
• In the third loop, a computation must be made before the data can be tested. Like the scanf() statement,

this computation must be written twice, once before entering the loop and again at the end of the loop.

The fourth box: correct data. The box produced this output when correct data were supplied:

Miles Per Hour Computation

Odometer reading at beginning of trip: 061234
Odometer reading at end of trip: 061475
Duration of trip in hours and minutes: 4 51
Average speed was 49.6907

Faulty data. Here are the results of supplying two kinds of invalid data (greeting and closing comments
have been omitted):

Odometer reading at beginning of trip: -1
Re-enter; odometer reading must be positive: 061234
Odometer reading at end of trip: 061521
Duration of trip in hours and minutes: 5 28
Average speed was 52.5

3.9. AN APPLICATION 73

Odometer reading at beginning of trip: 023498
Odometer reading at end of trip: 022222
Re-enter; input must be > previous reading: -32222
Re-enter; input must be > previous reading: 032222
Duration of trip in hours and minutes: 148 43
Average speed was 58.6618

3.9 An Application

We have analyzed several small programs; now it is time to show how to start with a problem and synthesize
a program to solve it. We will create a program for Joe Smith, the owner of a gas station in Niagara Falls,
New York. Joe advertises that his prices are cheaper than those of his competitor, Betty, across the border
in Niagara Falls, Ontario. To be sure that his claim is true, he computes the U.S. equivalent of Betty’s rates
daily. Joe’s employee reads Betty’s pump prices on the way to work each day, and Joe uses his Internet
connection to look up the current exchange rate (U.S. dollars per Canadian dollar). Canadian gas is priced
in Canadian dollars per liter. U.S. gas is priced in U.S. dollars per gallon. The conversion is too complicated
for Joe to do accurately in his head. Figure 3.16 defines the problem and specifies the scope and properties
of the desired solution. We will write a solution step by step. As we go along, we will write a comment for
every declaration and any part of the code we defer to a later step.

Step 1. Writing the specification.
Sometimes you will be given a specification, like that in Figure 3.16, and you can begin to plan your strategy
based on it. Much of the time, though, you will be given only a general description, as in the previous
paragraph. You can fill in many of the details of the specification directly, but you might need to look up
in a reference book things like constants or formulas, and you may need to decide the level of accuracy to
maintain in your calculations. Until you have completed this step, you will be wasting time by trying to
jump into writing the program.

Step 2. Creating a test plan.
Before beginning to write the program, we plan how we will test it. The first test case should be something
that can be computed in one’s head. We note that one of the simplest computations will occur when the
exchange rate is 1.0. Then, if the price per liter is the same as the number of gallons per liter, the price per
gallon should be $1.00. We enter this set of numbers as the first line of the test plan in Figure 3.17. We
enter the inverse case as the second line of the table: For a price of $1.00 Canadian per liter, the U.S. price
should be the same as the conversion factor for liters per gallon.

As a third test case, we enter an unacceptable conversion rate; we expect to see an error comment in
response. We also must test the program’s response to an invalid gas price, so we add a line with a negative
price. This is called “black-box testing”: the test values are drawn from the specification or from general
knowledge of the kinds of data that often cause trouble. They could be chosen by someone with no knowledge
of the code itself. (The code could be inside a black box.)

74 CHAPTER 3. THE CORE OF C

1. Problem scope: Write a short program for Joe that will compute the price per gallon for one grade
of gas, in U.S. funds, that is equivalent to Betty’s price for that grade of gas.

2. Inputs: (1) The current exchange rate, in U.S. dollars per Canadian dollar. This rate varies daily. (2)
The Canadian prices per liter for one grade of gasoline.

3. Constants: The number of liters in 1 gallon = 3.78544
4. Formula:

$_US

gallon
=

$_Canadian

liter
∗ liters

gallon
∗ $_US

$_Canadian

5. Output required: Echo the inputs and print the equivalent U.S. price.
6. Computational requirements: All the inputs will be real numbers.
7. Limitations: The exchange rate and the price for gas should be positive. If the user enters an incorrect

input, an error message should be displayed and another opportunity given to enter correct input.

Figure 3.16. Problem specification: Gas prices.

Rate Can.$/liter U.S.$/gallon

1.0 $0.26417 $1.00
1.0 $1.00 $3.78544

−0.001 $1.00 Error
1.0 −$0.87 Error
0.7412 $0.55 $1.543173

Figure 3.17. Test plan: Gas prices.

Finally, we enter a typical conversion rate and a typical price per liter, expecting to see an answer that
is consistent with real prices. We use a hand calculator to compute the correct answer. We now have five
lines in our test plan, which is enough for a simple program that tests for acceptable inputs.

Step 3. Starting the program.
First, we write the parts that remain the same from program to program, that is, the #include command
and the first and last lines of main() with the greeting message and termination code. The dots in the code
represent the unfinished parts of the program that will be filled in by later coding steps.

3.9. AN APPLICATION 75

#include <stdio.h>
... /* Space for #defines. */
int main(void)
{

... /* Space for declarations. */
puts("\n Gas Price Conversion Program \n");
... /* Input statements. */
... /* Computations. */
... /* Output statements. */
return 0;

}

Step 4. Reading the data.
The exchange rate is a number with decimal places, so we declare a double variable to store it and put the
declaration at the top of main():

double US_per_Can; /* Exchange rate, $_US / $_Canadian */

We decide to use a data validation loop to prompt for and read the current exchange rate, so we write down
the parts of a while validation loop that always are the same, modifying the loop test, prompts, formats,
and variable names, as appropriate, for our current application. This code goes into the main() program in
the second spot marked by the dots.

printf(" Enter the exchange rate, $US per $Can: ");
scanf("%lg", &US_per_Can);

while (US_per_Can < 0.0) {
printf(" Re-enter; rate must be positive: ");
scanf("%lg", &US_per_Can);

}

When writing the calls on scanf(), remember to use %lg in the format for type double and put the
ampersand before the variable name.

Next, we must read and validate the Canadian gas price. We declare a variable with a name that reminds
us that the input is the price in Canadian dollars for a liter. We also remember to declare a variable for the
price in U.S. dollars.

double C_liter; /* Canadian dollars per liter */
double D_gallon; /* US dollars per gallon */

Now we write another data validation loop, modifying the loop test, prompts, formats, and variable names,
as needed. We write it in the program after the first loop.

76 CHAPTER 3. THE CORE OF C

/* ---
// Compute the equivalent prices for Canadian gas and U.S. gas
*/
#include <stdio.h>
#define LITR_GAL 3.78544

int main(void)
{

double US_per_Can; /* Exchange rate, $_US / $_Canadian */
double C_liter; /* Canadian dollars per liter */
double D_gallon; /* US dollars per gallon */

puts("\n Gas Price Conversion Program \n");
printf(" Enter the exchange rate, $US per $Can: ");
scanf("%lg", &US_per_Can);
while (US_per_Can < 0.0) {

printf(" Re-enter; rate must be positive.\n ");
scanf("%lg", &US_per_Can);

}

printf(" Canadian price per liter: ");
scanf("%lg", &C_liter);
while (C_liter < 0.0) {

printf(" Re-enter; price must be positive: ");
scanf("%lg", &C_liter);

}

D_gallon = C_liter * LITR_GAL * US_per_Can;
printf("\n Canada: $%g USA: $%g \n", C_liter, D_gallon);

return 0;
}

Figure 3.18. Problem solution: Gas prices.

printf(" Canadian price per liter: ");
scanf("%lg", &C_liter);

while (C_liter < 0.0) {
printf(" Re-enter; price must be positive: ");
scanf("%lg", &C_liter);

}

3.9. AN APPLICATION 77

Step 5. Converting the gasoline price.
We defined a constant for liters per gallon at the very top of the program. Now we are ready to compute
the price per gallon. Remember that we do not use an = sign or a semicolon in a #define command:

#define LITR_GAL 3.78544

We check the conversion formula given in the specification, making sure that the units do cancel out and
leave us with dollars per gallon. Then we write the code for it and a printf() statement to print the
answers:

D_gallon = C_liter * LITR_GAL * US_per_Can;
printf("\n Canada: $%g USA: $%g \n", C_liter, D_gallon);

Step 6. Testing the completed program.
The finished program is shown in Figure 3.18. Now we run the program and enter the first data set from
the test plan. The results are

Gas Price Conversion Program

Enter the exchange rate, $US per $Can: 1.0
Canadian price per liter: .26417

Canada: $0.26417 USA: $1

Here is a test run using ordinary data (the last line in the test plan):

Gas Price Conversion Program

Enter the exchange rate, $US per $Can: .7412
Canadian price per liter: .55

Canada: $0.55 USA: $1.54317

Finally, we run the program twice again to test the error handling (the greeting message has been omitted):

Enter the exchange rate, $US per $Can: -0.001
Re-enter; rate must be positive: 1.001
Canadian price per liter: 1.00

Canada: $1 USA: $3.78923
--
Enter the exchange rate, $US per $Can: 1.0
Canadian price per liter: -.087
Re-enter; price must be positive: 2.30

Canada: $2.3 USA: $8.70651

78 CHAPTER 3. THE CORE OF C

3.10 What You Should Remember

3.10.1 Major Concepts

The C language contains many facilities not mentioned yet, and those that have been introduced can be
used in many more ways than demonstrated here. It can take years for a programmer to become truly
expert in this language. In the face of this complexity, a beginner copes by starting with simple applications,
mastering the basic concepts, and learning only the most important details. In this chapter, we have taken a
preliminary look at the most basic and important elements of the C language and how they can be combined
into a simple but complete program. These are grouped into related areas and summarized.

• Language elements:
The C language contains elements (called commands, operators, and functions) that can be translated
to groups of instructions built into a computer’s hardware. It provides names or symbols for actions
such as add (+) and compare (==) but not for complex activities like solve this equation or abstract
activities such as think.

• Overall program structure:
– An #include command is needed at the top of your program to allow your program to use system

library functions.
– A program must have a main() function.
– The main() function starts with a series of declarations.
– A series of statements follows the declarations.
– A program should start with a statement that prints a greeting and gives instructions for the user.

• Types, objects, and declarations:
– A program uses the computer’s memory to create abstract models of real-world objects such as

people, buildings, or numbers. Declarations are used to create and name these objects and may
also give them initial values.

– Declarations are grouped at the top of a program block.
– Variables and const variables are objects; their names are used like nouns in English as the subjects

and objects of actions.
– An object has a name, a location, and a value. The compiler assigns the location for the object.

We can give it a value by initializing it in the declaration or by assigning a value to it later. An
object that has not been given a value is said to be uninitialized or to contain garbage.

– Every object has a type. Types are like adjectives in English: The type of an object describes its
properties and how it may be used. The three basic data types seen so far are int, char, and
double.

– A constant object must be initialized in the declaration and its value cannot be changed.
– A #define command can be written at the top of a program to create a symbolic name for a literal

constant.

3.10. WHAT YOU SHOULD REMEMBER 79

• Simple statements:
– The programmer combines operations and functions into a series of sentence-like statements that

describe the actions to be carried out and the order in which they must happen.
– Each statement tells the computer what to do next and what variables and constants to use in the

process.
– When a program is executed, the instructions in the program are run in order, from beginning

to end. That sequential order can be modified by control instructions that allow for choices and
repetition of blocks of statements.

– The scanf() statements perform input. They let a human being communicate with a computer
program. If a program requires the user to enter data, the input statement should be preceded by
an output statement that displays a user prompt.

– The puts() and printf() statements perform output. These statements let a computer program
communicate with a human being.

– An assignment statement can perform a calculation and store the result in a variable so that it can
be used later. In general, calculations follow the basic rules of mathematics.

• Compound statements:
– Statements can be grouped into blocks with curly brackets.
– The simple if statement is a conditional control statement. It has a condition and one block of

code that is executed when the condition is true.
– The if...else statement is a conditional control statement that has a condition and two blocks

of code, a true clause and a false clause. When an if...else statement is executed, the condition
is tested first and this determines which block of code is executed.

– The while statement is a looping control statement. It has a condition and one block of code. The
condition is tested first, and if the condition is true, the block is executed. Then the condition is
retested. Execution and testing are repeated as long as the condition remains true.

– The counting loops seen so far require that a counter variable be initialized prior to the loop and
updated in some manner each time through the loop.

3.10.2 Programming Style

• A comment should follow each variable declaration to explain the purpose of the variable.
• Input data should be checked for validity: Garbage input causes garbage output.
• When writing your own programs, it often helps to model your work after a sample program that does

a similar task. This makes it easier to find a combination of input, calculation, output, and control
statements that are consistent with each other and work gracefully together.

• Indentation is important for readability. A programmer should adopt a meaningful indentation style
and follow it consistently.

80 CHAPTER 3. THE CORE OF C

• Line up the words if and else with the } brackets that close each clause in the same column. Indent
all the statements in each clause. This assures a neat appearance and helps a reader find the end of
the clause.18

• If the clause to be executed in one part of an if statement is short and the other part is long, put
the short clause first. This helps the reader see the whole picture easily. For example, suppose the
program must test an input value to determine whether it is in the legal range. If it is legal, several
statements will be used to process it. If it is illegal, the program will print an error comment and
terminate execution, which takes only two lines of code. This program should be written with the
error clause first (immediately following the if test) and the normal processing following the else.

• Where possible, avoid writing the same statement twice. This makes the program clearer and easier to
debug. For example, do not put the same statement in both clauses of an if statement; put it before
the if or after it.

• If both the true clause and the false clause are single statements, the entire if statement can be
written on two lines without curly brackets ({ and }) to begin and end the clauses. If either clause is
longer than one line, both clauses should be written with curly brackets.

3.10.3 Sticky Points and Common Errors

• When you compile a program and get compile-time error comments, look at the first one first. One
small error early in the program can produce dozens of error comments; fixing that single error often
will make many comments go away.

• If you misspell a word, it becomes a different word in the eyes of the compiler. This is the first thing
to check when you do not understand a compile-time or link-time error comment.

• An extra semicolon after the condition in an if or while statement will end the statement, and the
code that should be within the if or while statement will be outside it. For example, suppose the
while statement in the countdown program (Figure 3.14) were written incorrectly:

m = ITERATIONS;
while (m > 0);
{ printf(" %i. \n", m);

m = m - 1;
}

The programmer will expect to see 20 lines printed on the page, with the first line numbered 20 and the
last numbered 1. Instead, the semicolon ends the loop, which therefore has no body at all. The update
line m = m - 1; is outside the loop and cannot be reached. The program will become an infinite loop
because nothing within the loop will decrement the loop variable, m.

18This layout scheme is advocated by Recommended C Style and Coding Standards, guidelines published in 1994 by experts
at Bell Laboratories.

3.10. WHAT YOU SHOULD REMEMBER 81

• A missing semicolon will not be discovered until the compiler begins working on the next line. It will
tell you that there is an error, but give the wrong line number. Always check the previous line if you
get a puzzling error comment about syntax.

• Quotation marks, curly brackets, and comment-begin and -end marks come in pairs. If the second
mark of a pair is omitted, the compiler will interpret all of the program up to the next closing mark
as part of the comment or quote. It will produce odd and unpredictable error comments.

• If the output seems to make no sense, the first thing to check is whether the declared type of each
variable on the output list matches the conversion specification used to print it. An error anywhere in
an output format can affect everything after that on the line. If this does not correct the problem, add
more diagnostic printouts to your program to display every data item calculated or read as input. If
the input values are correct and the calculated values are wrong, check your formulas for precedence
errors and check your function calls for errors.

• If the input values are wrong when you echo them, make sure you have ampersands before the names
of the variables in the scanf() statement. Check also for type errors in the conversion specifiers in
the format.

3.10.4 New and Revisited Vocabulary

These important terms and concepts were presented in this chapter:

lexical analysis
preprocessor command
program block
declaration
statement
keyword
literal constant
symbolic constant
constant variable
variable
data value
data type
initializer

precision
modifier
identifier
local name
undefined value
garbage
object diagram
string
prompt
stream
buffer
format
conversion specifier

assignment (=)
expression
operators (+, −, ∗, /)
precedence
sequential execution
control statement
condition
loop test
loop body
loop counter
data validation loop
flow diagram
black-box testing

82 CHAPTER 3. THE CORE OF C

The following C keywords and functions were presented in this chapter:

#include
#define
main()
return statement
{...} (block)
/*...*/ (comment)
if...else statement

while loop
\n (newline character)
& (address of)
<stdio.h>
stdin
stdout
stderr

double
int
char
const
scanf()
puts()
printf()

3.10.5 Where to Find More Information

• The complete set of standard C keywords is given in Appendix C.
• A full discussion of types int and double is given in Chapter 7 where we deal with representation,

overflow, and the imprecise nature of floating point numbers.
• Additional simple and compound types are introduced in Chapters 10 through 14.
• Storage classes are introduced and used as follows:

– const: Introduced here and used hereafter.
– volatile: Introduced and used in Chapter 13.
– auto: Introduced in Chapter 19, used throughout.
– extern: Introduced in Chapter 19, used in Chapter 20.
– static: Introduced in Chapter 19, used in Chapter 20.
– register: Introduced in Chapter 19, not used in a program.

• Many more operators and the details of operator precedence and associativity are given in Chapter 4.
• Program design, with pseudocode and top-down development, is revisited in Chapters 5, 6, and 9.
• Operators associated with pointers are given in Chapter 11, those for bit manipulation are given in

Chapter 15, those for accessing a struct in chapter 13, and the conditional operator is explained in
Appendix D.

• The third basic control structure, functions, will be introduced in Chapter 5
• The other two loop statements will be presented in Chapter 6.
• As other types of data are introduced in Chapters 7 through 11, more details about formats will be

presented.
• The complexities of streams will be explored in Chapter 14.

3.11. EXERCISES 83

3.11 Exercises

3.11.1 Self-Test Exercises

1. Four code fragments and four flow diagrams follow. Note that each diagram has two action boxes and
one or two question boxes. All four represent distinct patterns of logic. Match each code fragment to the
corresponding flow diagram and show how the code fits into the boxes.

(1)
if (radius < 0) {
volume = 0;
}
if (height < 0) {
volume = 0;

(2)
if (radius < 0) {
volume = 0;
}
else if (height < 0) {
volume = 0;
}

(3)
if (t < 1) {
v = t;
}
else {
v = 1;
}

(4)
if (rad > 100)
puts("Too big");
area = PI * rad * rad;

(a)

(b)

(c)

(d)

2. What is wrong with each of the following declarations?

(a) int d; a = 5;

(b) doubel h;

(c) int h = 2.5;

(d) const double g;

(e) character middle_initial;

(f) double h = 2.0 * x;

(g) integer k = 0;

(h) char gender = "M";

84 CHAPTER 3. THE CORE OF C

3. What conversion specifier do you use in an output format for an int variable? For a double variable?
For a character?

4. Find the error in each of the following declarations.

(a) integer count;

(b) real weight ;

(c) int k; count;

(d) character gender;

(e) duble age;

5. What happens when you omit the ampersand (address of) before a variable name in a scanf() statement?
To find out, delete an ampersand in one of the sample programs. Try to compile and run the resulting
program.

6. What happens when you type an ampersand before a variable name in a printf() statement? Try it.

7. What happens when you type a comment-begin mark but forget to type (or mistype) the matching
comment-end mark? To find out, delete a comment-end mark in one of the sample programs and try to
compile the result.

8. What happens when you type a semicolon after the closing parenthesis in a simple if statement? Try it.

9. What is wrong with each of the following if statements? They are supposed to identify and print out
the middle value of three double values, x, y, and z.

(a) if (x < y < z) printf("y=%g", y);
else if (y < x < z) printf("x=%g", x);
else printf("z=%g", z);

(b) if (x < y)
if (y < z) printf("y=%g", y);
if (z < y) printf("z=%g", z);

else
if (x < z) printf("x=%g", x);
if (z < x) printf("z=%g", z);

(c) if (x > y)
{ if (x < z);

printf("x=%g", x);
else printf("z=%g", z);

}
else
{ if (y < z);

printf("y=%g", y);
else printf("z=%g", z);

}

3.11. EXERCISES 85

3.11.2 Using Pencil and Paper

1. What does your compiler do when you misspell a keyword such as while or else? What happens when
you misspell a function name such as main() or scanf()? Try it.

2. What happens when you type a semicolon after the closing parenthesis in a while statement? Try it.

3. What conversion specifier do you use in an input format for an int variable? For a double variable? For
a character variable?

4. Find the error in each of the following preprocessor commands.

(a) #include <stdio>

(b) #define NORMAL = 98.6

(c) #include stdio.h

(d) #define TOP 1,000

(e) #define LOOPS 10;

(f) #include <studio.h>

5. Given the declarations on the first three lines that follow, find the error in each of the following statements:

int age, count;
double price, weight;
char gender;

(a) scanf("%g", &price);

(b) scanf("%c", &gender);

(c) scanf("%d", &weight);

(d) printf("%i", &count);

(e) printf("%lg", price);

(f) printf("%c", gendre);

6. Draw a flow diagram of the following program and use your diagram to trace its execution. What is the
output?

#include <stdio.h>
int main(void)
{

int k, m;
k = 0;
m = 1;
while (k <= 3) {

k = k + 1;
m = m * 3;

}
printf("k = %i m = %i \n", k, m);
return 0;

}

86 CHAPTER 3. THE CORE OF C

7. In the following program, circle each error and show how to correct it:

#include (stdio.h)
int main (void)
{

integer k;
double x, y, z

printf(Enter an integer:);
scanf("%i", k);
printf("Enter a double:);
scanf("%g", &X);
printf("Enter two integers:);
scanf("%lg", &y, &z);
printf("k= %i X= %g \n", &k, &x);
printf("y= %i z= %g \n" y, z);

}

8. Draw a flow diagram for each set of statements, then trace their execution and show the output. Use
these values for the variables: w=3, x=1, y=2, z=0.

(a) if (x < y) z=1; if (x > w) z=2;

printf(" %i\n", z);

(b) if (x < y) z=1; else if (x > w) z=2;

printf(" %i\n", z);

(c) if (w < x) z=1; else if (w > y) z=2; else z=3;

printf(" %i \n", z);

3.11.3 Using the Computer

1. Heat transfer.

Complete the following program for heat transfer that already has been designed and partially coded.
The program analyzes the results from a heat transfer experiment in which hot water flows through a pipe
and cold water flows in the opposite direction through a surrounding, concentric pipe. Thermocouples
are placed at the beginning and end of both pipes to measure the temperature of the water coming in
and going out, as diagrammed here.

Hot water flow

Cold water flow

cold1cold2

hot2hot1

Thermocouples are at both ends of both pipes

3.11. EXERCISES 87

This is a standard engineering calculation. To calculate the heat transfer, we need the average hot
temperature, the average cold temperature, and the change in temperature from input to output for both
hot and cold pipes.

Your job is to start with the incomplete program in Figure 3.19, fill in the boxes according to the
instructions that follow in each box, and make the program work. Use the following test plan.

Test Plan Data Answers

Inlets Outlets Means Differences

Test Objective Hot Cold Hot Cold Hot Cold Hot Cold

Easy to calculate 100 0 50 50 75 25 −50 50
Another legal input 120 35 100 50 110 42.5 −20 15

(a) Get a copy of the file fex_heat.c, which contains the partially completed program in Figure 3.19.
Write program statements to implement the actions described in each of the comment boxes. Delete
the existing comments and add informative ones of your own.

(b) Compile your code and test it using the test plan given above. Prepare proper documentation for
the project including the source code, output from running the program on the test data, and hand
calculations that prove the output is correct.

2. Temperature Conversion.

Complete a program for temperature conversion that has been designed and partially coded. The program
will read in a temperature in degrees Fahrenheit, convert it into the equivalent temperature in degrees
Celsius, and display this result. Your job is to start with the incomplete program in Figure 3.20 fill in
the boxes according to the instructions given below in each box, and make the program work.

(a) Make an appropriate test plan for your program following the layout scheme below.

Input Output
Test objective Fahrenheit Celsius

Easy-to-calculate input
Another legal input
Minimum legal input
Out-of-range input

(b) Start coding with a copy of the file fex_temp.c, which contains the partially completed program in
Figure 3.20. Following the instructions given in each comment box, write program statements to
implement the actions described. Delete the existing comments and add informative ones of your
own. Compile and run your code, testing it according to the first line of your plan. Check the
answer. If it is correct, print it out and go on to the rest of your test plan. If it is incorrect, fix it
and test it again until it is correct. When the answers are correct, print out the program and its
output on these tests, and hand them in with the test plan.

88 CHAPTER 3. THE CORE OF C

/* This program will compute heat characteristics of a concentric-pipe */
/* heat exchanger, including mean hot and cold temperatures, and the */
/* differences in temperatures of the ends of the pipes. */

#include <stdio.h>
int main(void)
{

double hot1; /* hot inlet temperature */
double hot2; /* hot outlet temperature */
double cold1; /* cold inlet temperature */
double cold2; /* cold outlet temperature */
double mean_hot; /* average of hot temperatures */
double mean_cold; /* average of cold temperatures */
double dthot; /* difference in hot temperatures */
double dtcold; /* difference in cold temperatures */

puts("Heat Transfer Experiment");

Prompt user to enter four inlet and outlet temperatures.
Use a separate prompt for each temperature you read.
Use scanf() to read each and store in the appropriate variable.

Calculate the mean of the hot temperatures (their sum divided by 2)
and the mean of the cold temperatures. Save each value in an
appropriate variable.

Calculate dthot (difference in hot temperatures = the hot outlet
temperature minus the hot inlet temperature) and dtcold.
Again save these in the appropriate variables.

Put comments on these lines describing the calculations.

Write printf() statements to echo the four input temperatures.
Write printf() statements to print the four calculated numbers.
Label each output clearly, so we can tell what it means.
Use \n and spaces in your formats to make the output easy to read.

return 0;
}

Figure 3.19. Sketch for the heat transfer program.

3.11. EXERCISES 89

/* --- */
/* This program will convert temperatures from degrees Fahrenheit into */
/* degrees Celsius. Input temperature must be above absolute zero.*/

#include <stdio.h>

Define a constant for absolute zero in Fahrenheit (-459.67).

int main(void)
{

double fahr; /* Temperature in Fahrenheit degrees */
double cels; /* Temperature in Celsius degrees */

puts("\n Temperature Conversion Program");

Prompt the user to enter a temperature in degrees Fahrenheit.
Use scanf() to read it and store it in the appropriate variable.
Write a printf() statement that will echo the input.

Test whether the input temperature is less than absolute zero.
If so, print an error comment.
If not, calculate the temperature in degrees Celsius according
to the formula C = 5.0

9.0 ∗ (F − 32.0) and print the answer.

Label the output clearly.
Use newlines and spaces in your formats to make the output
easy to read.

return 0;
}

Figure 3.20. Sketch for the temperature conversion program.

3. Sales Tax.

The text website contains a complete program to solve the problem described below. However, the
program will not compile and may have logical errors. Download the program and debug it, according
to your specification. Hand in the debugged program and its output.

Given the cost of a purchase, and a character ’T’ for taxable or ’N’ for non-taxable, compute the sales
tax and total price. Let the tax rate be 6%.

90 CHAPTER 3. THE CORE OF C

(a) Problem scope: Write a program that will calculate the surface area of a ring gasket.
(b) Inputs: The outer diameter of the gasket, d_gasket, and the diameter of the hole in the center of the

gasket, d_hole. Both diameters should be given in centimeters.

d_hole

d_gasket

Formula:

area =
π × (d_gasket2− d_hole2)

4

(c) Limitations: The value of d_gasket must be nonnegative. The ratio of d_hole to d_gasket must be
greater than 0.3 and less than 0.9.

(d) Constant: π= 3.14159265
(e) Output required: The surface area of the gasket. (Echo the inputs also.)
(f) Computational requirements: All the inputs will be real numbers.

Figure 3.21. Problem specification: Gasket area.

4. Gasket area.

A specification for a program that computes the area of a ring gasket is given in Figure 3.21. From this,
the flow diagram in Figure 3.22 was constructed.

(a) Develop a test plan for this program based on the problem specification in Figure 3.21.

(b) Write a program based on the algorithm in Figure 3.22.

(c) Make sure all of your prompts and output labels are clear and easy to read.

(d) Test your program using the test plan you devised.

(e) Turn in the source code and output results from your test.

5. Skyscraper.

The text website contains a complete program to solve the problem described below. However, the
specification and test plan are missing and the program will not compile and may have logical errors. Write
a specification and test plan, then download the program and debug it, according to your specification.
Hand in your work plus the debugged program and its output.

Assume that the ground floor of a skyscraper has 12-foot ceilings, while other floors of the building have
8-foot ceilings. Also, the thickness in between every floor is 3 feet. On top of the building is a 20-foot
flagpole. If the building has N stories altogether, and N is given as an input to your program, calculate
the height of a blinking red light at the top of the flagpole and print out this height.

3.11. EXERCISES 91

double d_gasket�
double d_hole�

double area�
p = 3.14159265

main()

return

Print program title�
Prompt for d_gasket and d_hole�

Read inputs (in centimeters)

area = p(d_gasket2 – d_hole2)/4�
Print d_gasket, d_hole, and area

d_gasket <= 0?

false

print "Error: inputs must be > 0."

print "Normal termination"

d ratio < .3?

false

true

true

print "Error: hole is too small."

d ratio > .9?

false

true
print "Error: hole is too large."

[.7]
Figure 3.22. Flow diagram for the gasket area program.

6. Weight conversion.

Write a program that will read a weight in pounds and convert it to grams. Print both the original
weight and the converted value. There are 454 grams in a pound. Design and carry out a test plan for
this program.

7. Distance conversion.

Convert a distance from miles to kilometers. There are 5,280 feet per mile, 12 inches per foot, 2.54
centimeters per inch, and 100,000 centimeters per kilometer.

8. More Temperature Conversion. Revise the specification, test plan and program from problem 4 so that
the user can enter a temperature in either Celsius or Fahrenheit, and the program will convert it to the
other system. The inputs should be a temperature and a character, “C” for Celsius or “F” for Fahrenheit.
Use an if statement to test which letter was entered, then perform the appropriate conversion. Echo the

92 CHAPTER 3. THE CORE OF C

input and label the output properly. The formula for conversion from Celsius to Fahrenheit is

Fahrenheit = Celsius× 9
5

+ 32

9. Meaningful change.

Write a program that will input the cost of an item from the user and output the amount of change due
if the customer pays for the purchase with a $20 bill. What kinds of problems might this program have?
(Think about unexpected inputs.) Design a test plan to detect these problems. Use an if statement to
validate your data to prevent meaningless outputs.

10. A snow job.

Your snow blower clears a swath 2 feet wide. Given the length and width of your rectangular driveway,
calculate how many feet you will need to walk to clear away all the snow. Be sure to include the steps
you take when you turn the snow blower around. Write a program that contains validation loops for the
two input dimensions, echoes the input, and prints out the calculated distance.

11. Plusses and minuses.

Your program will be used as part of a quality control system in a factory that makes metal rods of
precise lengths. The current batch of rods is supposed to be 10 cm long. An automated measuring
device measures the length of each rod as it comes off the production line. These measurements are
automatically sent to a computer as input. Some rods are slightly shorter and some slightly longer than
the target length. Your program must read the measurements (use scanf()). If the rod is too short, add
it to a short_total; otherwise, add it to a long_total. Also, count it with either the short_counter or
the long_counter. After each batch of 20 rods, print out your totals, counters, and the average length
of the rods in the batch.

